Modeling and Performance Testing of Anti-Lock Braking System (ABS) with Variation of Road Friction Coefficient to Braking Distance

Miftahul Ulum, Desmas Arifianto Patriawan

Abstract

Automated vehicles are increasingly being researched and developed to reduce accident rates. The braking system is an integral part of the safety factor in the vehicle. One of the development systems in braking on vehicles is the Anti-lock Braking System (ABS). ABS is a vehicle b that prevents the wheels from locking during sudden braking. The research was conducted by modelling and designing the ABS braking system using SIMULINK software on MATLAB. This research was conducted by varying the coefficient of braking friction on dry asphalt, wet asphalt, dry soil, and wet soil by paying attention to the braking distance. In the first test, the first test of the non-ABS system sets 0.9. The results were obtained with the shortest braking distance of 20 meters and the farthest, 34.5 meters. As for the results with ABS, the shortest braking distance is 17.95 meters, and the farthest is 27 meters. From the analysis that has been done, it is found that the ABS is better than the non-ABS system. This is because ABS regulates the braking calliper and is adjusted to the vehicle’s dynamics instead of statically. When there is a difference in vehicle speed with different wheels too far (while the wheels will lock), the calliper on the brakes will open and close dynamically, unlike non-ABS

Keywords

modelling, braking distance, coefficient of friction, calliper, automatic vehicles

Full Text:

PDF

References

Alaboodi, A. S., Algadah, K. M., & Department of Mechanical Engineering, College of Engineering, Qassim University, Saudi Arabia, Saudi Arabia. (2019). Anti-Lock Braking System Components Modelling. International Journal of Innovative Technology and Exploring Engineering, 9(2), 3969–3975. https://doi.org/10.35940/ijitee.B7248.129219

Dousti, M., Baslamısli, S. C., Onder, E. T., & Solmaz, S. (2015). Design of a multiple-model switching controller for ABS braking dynamics. Transactions of the Institute of Measurement and Control, 37(5), 582–595.

Herawati, H. (2019). Karakteristik Dan Penyebab Kecelakaan Lalu Lintas Di Indonesia Tahun 2012. Warta Penelitian Perhubungan, 26(3), 133. https://doi.org/10.25104/warlit.v26i3.875

Lizamanihi, M. A., Munadhif, I., & Jami’in, M. A. (2020). Klasifikasi Gerakan Tangan Menjadi Suara Menggunakan Neural Network. Rekayasa, 13(3), 270–276. https://doi.org/10.21107/rekayasa.v13i3.6614

Mauer, G. F. (1995). A fuzzy logic controller for an ABS braking system. IEEE Transactions on Fuzzy Systems, 3(4), 381–388.

Patriawan, D. A., Irawan, H., Noerpamoengkas, A., Setyono, B., & Ismail, A. Y. (2021). Definition, criteria and approaches in designing suspension system with active controls. IOP Conference Series: Materials Science and Engineering, 1010(1), 012006. https://doi.org/10.1088/1757-899X/1010/1/012006

Patriawan, D. A., Natakusuma, B. P., Arifin, A. A., Maulana, H. S., & Irawan, H. (2021). Uji Presisi dari Nonholonomic Mobile Robot pada Rancang Bangun Sistem Navigasi. Journal of Mechanical Engineering, 1, 10.

Patriawan, D. A., & Putra, J. H. (2021). Analisis Perbandingan Biaya Operasional antara Kendaraan Listrik, Bensin dan Diesel. Senastitan, 1, 8.

Patriawan, D. A., Ulum, M., Alqoroni, M. S., & Ismail, A. Y. (2021). Transient Response Performance Test on Aftermarket Motorcycle Rear Suspension in Indonesia. Journal of Mechanical Engineering, Science, and Innovation, 1(2), 69–76. https://doi.org/10.31284/j.jmesi.2021.v1i2.2297

Pradeep Rohilla, Jitender, Amit, Akshay Dhingra, & THE NORTHCAP UNIVERSITY. (2016). Design and Analysis of Controller for Antilock Braking System in Matlab/Simulation. International Journal of Engineering Research And, V5(04), IJERTV5IS041074. https://doi.org/10.17577/IJERTV5IS041074

Prasetyo, E., Hermawan, R., Ridho, M. N. I., Hajar, I. I., Hariri, H., & Pane, E. A. (2020). Analisis Kekuatan Rangka Pada Mesin Transverse Ducting Flange (TDF) Menggunakan Software Solidworks. Rekayasa, 13(3), 299–306. https://doi.org/10.21107/rekayasa.v13i3.8872

Purboputro, P. I. (2016). Pengembangan Bahan Kampas Rem Sepeda Motor Dari Komposit Serat Bambu Terhadap Ketahanan Aus Pada Kondisi Kering Dan Basah. Media Mesin: Majalah Teknik Mesin, 17(2). https://doi.org/10.23917/mesin.v17i2.2877

Purboputro, P. I. (2020). Pembuatan Kampas Rem Menggunakan Variasi Butiran Mesh Alumunium Silicon (Al-Si) 50, 60, 100 Dengan Serbuk Kayu Jati Terhadap Nilai Tingkat Kekerasan, Keausan Dan Koefisien Gesek. Media Mesin: Majalah Teknik Mesin, 21(1), 35–45. https://doi.org/10.23917/mesin.v21i1.9753

Rasheed, I., Hu, F., & Zhang, L. (2020). Deep reinforcement learning approach for autonomous vehicle systems for maintaining security and safety using LSTM-GAN. Vehicular Communications, 26, 100266. https://doi.org/10.1016/j.vehcom.2020.100266

Rigas, E. S., Ramchurn, S. D., & Bassiliades, N. (2014). Managing electric vehicles in the smart grid using artificial intelligence: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1619–1635.

Sam, D., Velanganni, C., & Evangelin, T. E. (2016). A vehicle control system using a time synchronized Hybrid VANET to reduce road accidents caused by human error. Vehicular Communications, 6, 17–28. https://doi.org/10.1016/j.vehcom.2016.11.001

Saputra, A. D. (2018). Studi Tingkat Kecelakaan Lalu Lintas Jalan di Indonesia Berdasarkan Data KNKT (Komite Nasional Keselamatan Transportasi) dari Tahun 2007-2016. Warta Penelitian Perhubungan, 29(2), 179. https://doi.org/10.25104/warlit.v29i2.557

Setyono, B., Patriawan, D. A., Putra, A. W., Irawan, H., & Zuliari, E. A. (2019). Design Steering System with Independent Front Wheel Drive of The Hybrid Vehicle-Air Pressure and Electrical. IOP Conference Series: Materials Science and Engineering, 462, 012013. https://doi.org/10.1088/1757-899X/462/1/012013

Shi, E., Gasser, T. M., Seeck, A., & Auerswald, R. (2020). The Principles of Operation Framework: A Comprehensive Classification Concept for Automated Driving Functions. SAE International Journal of Connected and Automated Vehicles, 3(1), 12-03-01–0003. https://doi.org/10.4271/12-03-01-0003

Szikora, P., & Madarasz, N. (2017). Self-driving cars—The human side. 2017 IEEE 14th International Scientific Conference on Informatics, 383–387. https://doi.org/10.1109/INFORMATICS.2017.8327279

Tang, T., Anupam, K., Kasbergen, C., & Scarpas, A. (2017). Study of influence of operating parameters on braking distance. Transportation Research Record, 2641(1), 139–148.

Zakaria, Juwana, W. E., & Wibowo. (2018). Rancang bangun sistem rem anti-lock brake system (abs) dengan penambahan komponen vibrator solenoid. Jurnal Teknik Mesin Indonesia, 11(2), 83. https://doi.org/10.36289/jtmi.v11i2.59

DOI

https://doi.org/10.21107/rekayasa.v15i3.16561

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Miftahul Ulum

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.