Analisis Tekno-Ekonomi Produksi Pupuk Cair Ramah Lingkungan dari Limbah Air Budidaya Ikan Berbasis Masyarakat

Nizar Amir, Hakam Muzakki, Hoomzah Nur Alisiyah, Raden Apriyanto

Abstract

There are two important aspects of the implementation of this research, namely the technical aspect, which includes the production and analysis of the quality of liquid fertilizer products from fish farming wastewater, and the economic aspect, which includes an economic analysis on an industrial scale. Liquid fertilizer is made from fish farming wastewater obtained from Bangkalan Regency, East Java Province, Indonesia. The process of producing liquid fertilizer from fish farming wastewater includes various processes, from mixing to fermentation. The physical characteristics of liquid fertilizer from fish farming wastewater are in accordance with existing standards. Without the addition of nutrients, liquid fertilizer from fish farming wastewater has nitrogen (N) 1.33%, phosphorus (P) 0.44%, and potassium (K) 0.38%. Although the nutrient content of liquid fertilizer from fish farming wastewater is still below the standard of SNI 02-4958-2006, in industrial-scale production processes, adding nutrients is very necessary. In the economic analysis, all economic parameters are declared feasible and profitable, with an NPV value of Rp. 5,524,899,840, IRR 31,79%, PP 3.15 years and B/C ratio 3.1. This study shows a positive value on the technical and economic aspects. Finally, this research can be used as a reference by academics, government, and entrepreneurs in the technical and economic aspects of producing liquid fertilizer from fish farming wastewater.

Keywords

liquid fertilizer, fish farming wastewater, environmentally friendly, technical analysis, economic analysis

References

Ahuja, I., Dauksas, E., Remme, J. F., Richardsen, R., & Løes, A. K. (2020). Fish and fish waste-based fertilizers in organic farming – With status in Norway: A review. Waste Management, 115, 95–112. https://doi.org/10.1016/j.wasman.2020.07.025

Binsi, P. K. (2014). Overview of Waste Generation in Fish and Shellfish Processing Industry. ICAR-Central Institute of Fisheries Technology, 18–27.

BPS. (2021). Kabupaten bangkalan dalam angka 2021 (bangkalan regency in figures 2021). https://bangkalankab.bps.go.id/publication/2021/02/26/dff9191c855d888658b909d9/kabupaten-bangkalan-dalam-angka-2021.html

Buang, A., Yusoff, N., Mat, N., & Khandaker, M. M. (2018). Effects of Fish Waste Extract on the Growth, Yield and Quality of Cucumis sativus L. J. Agrobiotech, 9(1S), 250–259.

Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs, 18(12). https://doi.org/10.3390/md18120622

Casaclang, J. R., Gregorio, A. C., Resuello, R. B., Reyes, C. J. A., Bernardo-Fernandez, J., & Gonzales-Plasus, M. M. (2017). Fish hydrolysate derived from fish waste increased the growth of Kappaphycus Alvarezii. AACL Bioflux, 10(5), 1150–1156.

Choe, U., Mustafa, A. M., Lin, H., Choe, U., & Sheng, K. (2020). Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue. Bioresource Technology, 297, 122542. https://doi.org/10.1016/j.biortech.2019.122542

Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 1–39. https://doi.org/10.3390/md19020116

Dai, H., Li, N., Wang, Y., & Zhao, X. (2022). The Analysis of Three Main Investment Criteria: NPV IRR and Payback Period. Atlantic Press, 648(Icfied), 185–189. https://www.atlantis-press.com/proceedings/icfied-22/125971510

Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., & Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3), 81–88. https://doi.org/10.1016/j.aaf.2018.10.002

Dubey, R., Joshi, D., & Bansal, R. C. (2016). Optimization of Solar Photovoltaic Plant and Economic Analysis. Electric Power Components and Systems, 44(18), 2025–2035. https://doi.org/10.1080/15325008.2016.1209706

Efrida Lubis, Rini, S., Syofia, I., & Yoga Pradana, G. (2021). Use Of Liquid Organic Fertilizer Fish Waste And Chicken Manure Fertilizer On The Production Of Pumpkin (Cucurbita Moschata). International Journal of Science, Technology & Management, 2(5), 1775–1779. https://doi.org/10.46729/ijstm.v2i5.348

Hameed, R. T., Sarhan, S., & Mustafa, H. H. (2018). Synthesis of Liquid Organic Fertilizers from the Waste of Fishs. Journal of Engineering and Applied Sciences, 13(13), 10621–10626. https://doi.org/10.36478/jeasci.2018.10621.10626

Hamouda, R. (2016). Some Physical and Chemical Properties of Bio-fertilizers. Journal of Fertilizers & Pesticides, 07(01), 1–6. https://doi.org/10.4172/2471-2728.1000161

Ifa, L., Yani, S., Nurjannah, N., Darnengsih, D., Rusnaenah, A., Mel, M., Mahfud, M., & Kusuma, H. S. (2020). Techno-economic analysis of bio-briquette from cashew nut shell waste. Heliyon, 6(9), e05009. https://doi.org/10.1016/j.heliyon.2020.e05009

Illera-Vives, M., Seoane Labandeira, S., Brito, L. M., López-Fabal, A., & López-Mosquera, M. E. (2015). Evaluation of compost from seaweed and fish waste as a fertilizer for horticultural use. Scientia Horticulturae, 186, 101–107. https://doi.org/10.1016/j.scienta.2015.02.008

Kang, J. H., Jung, H. Y., & Kim, J. K. (2018). Complete reuse of raw fishmeal wastewater: Evidence from a field cultivation study and economic analysis. In Environmental Engineering Research (Vol. 23, Issue 3). https://doi.org/10.4491/eer.2017.190

Kara, K., Ouanji, F., Lotfi, E. M., Mahi, M. El, Kacimi, M., & Ziyad, M. (2018). Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egyptian Journal of Petroleum, 27(2), 249–255. https://doi.org/10.1016/j.ejpe.2017.07.010

Kim, J. K. (2011). Cost-effectiveness of converting fish waste into liquid fertilizer. Fisheries and Aquatic Sciences, 14(3), 230–233. https://doi.org/10.5657/FAS.2011.0230

KKP. (2021). Statistik KKP. https://statistik.kkp.go.id/home.php

L Aranganathan, R. R. S. . (2011). Management of Environmental Quality : An International Journal Article information : Management of Environmental Quality, 27(1), 93–103. https://doi.org/https://doi.org/10.1108/MEQ-05-2015-0074

Mahboob, S. (2015). Isolation and characterization of collagen from fish waste material- skin, scales and fins of Catla catla and Cirrhinus mrigala. Journal of Food Science and Technology, 52(7), 4296–4305. https://doi.org/10.1007/s13197-014-1520-6

Maktoof, A. A., Elherarlla, R. J., & Ethaib, S. (2020). Identifying the nutritional composition of fish waste, bones, scales, and fins. IOP Conference Series: Materials Science and Engineering, 871(1). https://doi.org/10.1088/1757-899X/871/1/012013

Matos Silva, C., Serro, J., Dinis Ferreira, P., & Teotónio, I. (2019). The socioeconomic feasibility of greening rail stations: a case study in lisbon. Engineering Economist, 64(2), 167–190. https://doi.org/10.1080/0013791X.2018.1470272

Mozumder, M. M. H., Uddin, M. M., Schneider, P., Raiyan, M. H. I., Trisha, M. G. A., Tahsin, T. H., & Newase, S. (2022). Sustainable Utilization of Fishery Waste in Bangladesh—A Qualitative Study for a Circular Bioeconomy Initiative. Fishes, 7(2), 1–21. https://doi.org/10.3390/fishes7020084

Murali, S., Krishnan, V. S., Amulya, P. R., Alfiya, P. V., Delfiya, D. S. A., & Samuel, M. P. (2021). Energy and water consumption pattern in seafood processing industries and its optimization methodologies. Cleaner Engineering and Technology, 4, 100242. https://doi.org/10.1016/j.clet.2021.100242

Oladigbolu, J. O., Al-Turki, Y. A., & Olatomiwa, L. (2021). Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alexandria Engineering Journal, 60(6), 5547–5565. https://doi.org/10.1016/j.aej.2021.04.042

PLN. (2020). Statistik PLN 2020 (PLN Statistics 2020). https://web.pln.co.id/stakeholder/laporan-statistik

Prasadi, O., & Triwuri, N. A. (2022). Study Of Nutrient Potential Waste Of Catfish , Cow Dung , And Ketapang Leaves As Solid Organic Fertilizer ( POP ). JUATIKA (Jurnal Agronomi Tanaman Tropika), 4(1), 131–138.

Radziemska, M., Vaverková, M. D., Adamcová, D., Brtnický, M., & Mazur, Z. (2019). Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste and Biomass Valorization, 10(9), 2537–2545. https://doi.org/10.1007/s12649-018-0288-8

Rahmatullah, R., Hasnudi, Mirwandhono, E., Patriani, P., Ginting, N., & Siregar, G. A. W. (2020). The effects of fermentation time and em4 dose on nutrient content of kepok’s peel as animal feed. Journal of Physics: Conference Series, 1542(1). https://doi.org/10.1088/1742-6596/1542/1/012030

Rinaldi, R., Bathara, L., & Hamid, H. (2015). Analisis Perkembangan Produksi Perikanan Budidaya di Kabupaten Rokan Hulu Provinsi Riau. Jurnal Online Mahasiswa Fakultas Perikanan Dan Ilmu Kelautan Universitas Riau, 2(1), 1–8.

Sahu, B. B., Paikaray, N. K., Paikaray, A., Agnibesh, A., Mohapatra, S., & Jayasankar, P. (2016). Fish Waste Bio-Refinery Products: Its application in Organic Farming. International Journal of Environment, Agriculture and Biotechnology, 1(4), 837–843. https://doi.org/10.22161/ijeab/1.4.30

Satyasai K.J.S. (2014). Application of Modified Internal Rate of Return Method for. Agricultural Economic Research Review, 22(1), 401–406.

Sharma, K. K., Mohapatra, B. C., Das, P. C., Sarkar, B., & Chand, S. (2013). Water budgets for freshwater aquaculture ponds with reference to effluent volume. Agricultural Sciences, 04(08), 353–359. https://doi.org/10.4236/as.2013.48051

Shaviklo, A. R. (2015). Development of fish protein powder as an ingredient for food applications: a review. Journal of Food Science and Technology, 52(2), 648–661. https://doi.org/10.1007/s13197-013-1042-7

Shi, S., Li, J., Guan, W., & Blersch, D. (2018). Nutrient value of fish manure waste on lactic acid fermentation by Lactobacillus pentosus. RSC Advances, 8(55), 31267–31274. https://doi.org/10.1039/c8ra06142d

Standar Nasional Indonesia. (2006). Pupuk Cair Hasil Samping Proses Asam Amino (SNI 02-4958-2006). https://www.bsn.go.id/

Sugandi, W. K., & Wahyu, A. (2019). Analisis Kelayakan Ekonomi Mesin Pencacah Rumput Gajah Tipe Reel. Agrikultura, 29(3), 144. https://doi.org/10.24198/agrikultura.v29i3.22727

Tajerin, T., Yusuf, R., Sastrawidjaja, S., & Asnawi, A. (2017). Keterkaitan Sektor Perikanan Dalam Perekonomian Indonesia: Pendekatan Model Input-Output. Jurnal Sosial Ekonomi Kelautan Dan Perikanan, 2(1), 19. https://doi.org/10.15578/jsekp.v2i1.5860

Taragusti, A. S., Santanumurti, M. B., Rahardja, B. S., & Prayogo. (2019). Effectiveness of Nitrobacter on the specific growth rate, survival rate and feed conversion ratio of dumbo catfish Clarias sp. with density differences in the aquaponic system. IOP Conference Series: Earth and Environmental Science, 236(1). https://doi.org/10.1088/1755-1315/236/1/012088

Thamer, A. A., & Issa Al Haboubi, N. A. (2020). Study the effect of different types impellers on the transfer coefficient in photobioreactor. IOP Conference Series: Materials Science and Engineering, 928(2). https://doi.org/10.1088/1757-899X/928/2/022144

Tike Dwi Putri, Dwi Putro Priandi, & Sriati. (2014). Dampak Usaha Perikanan Budidaya Terhadap Kondisi Lingkungan Dan Sosial Ekonomi Masyarakat Pada Lahan Pasang Surut Kabupaten Banyuasin Provinsi Sumatera Selatan. Jurnal Kuakultur Rawa Indonesia, 2(1), 43–54.

Tiwow, V. M. A., & Abram, P. H. (2019). Production of Liquid and Solid Organic Fertilizer from Tilapia Fish ( Oreochromismossambicus ) Wasteusing “ Bakasang ” Traditional Fermentation Technology. International Journal of Engineering and Advanced Technology (IJEAT), 3, 885–888.

Venugopal, V. (2021). Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Frontiers in Sustainable Food Systems, 5(June), 1–21. h/fsufs.2021.611835

DOI

https://doi.org/10.21107/rekayasa.v15i2.15494

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Nizar Amir

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.