Analisis Tekno-Ekonomi Produksi Pupuk Cair Ramah Lingkungan dari Limbah Air Budidaya Ikan Berbasis Masyarakat

Nizar Amir, Hakam Muzakki, Hoomzah Nur Alisiyah, Raden Apriyanto


There are two important aspects of the implementation of this research, namely the technical aspect, which includes the production and analysis of the quality of liquid fertilizer products from fish farming wastewater, and the economic aspect, which includes an economic analysis on an industrial scale. Liquid fertilizer is made from fish farming wastewater obtained from Bangkalan Regency, East Java Province, Indonesia. The process of producing liquid fertilizer from fish farming wastewater includes various processes, from mixing to fermentation. The physical characteristics of liquid fertilizer from fish farming wastewater are in accordance with existing standards. Without the addition of nutrients, liquid fertilizer from fish farming wastewater has nitrogen (N) 1.33%, phosphorus (P) 0.44%, and potassium (K) 0.38%. Although the nutrient content of liquid fertilizer from fish farming wastewater is still below the standard of SNI 02-4958-2006, in industrial-scale production processes, adding nutrients is very necessary. In the economic analysis, all economic parameters are declared feasible and profitable, with an NPV value of Rp. 5,524,899,840, IRR 31,79%, PP 3.15 years and B/C ratio 3.1. This study shows a positive value on the technical and economic aspects. Finally, this research can be used as a reference by academics, government, and entrepreneurs in the technical and economic aspects of producing liquid fertilizer from fish farming wastewater.


liquid fertilizer, fish farming wastewater, environmentally friendly, technical analysis, economic analysis


Ahuja, I., Dauksas, E., Remme, J. F., Richardsen, R., & Løes, A. K. (2020). Fish and fish waste-based fertilizers in organic farming – With status in Norway: A review. Waste Management, 115, 95–112.

Binsi, P. K. (2014). Overview of Waste Generation in Fish and Shellfish Processing Industry. ICAR-Central Institute of Fisheries Technology, 18–27.

BPS. (2021). Kabupaten bangkalan dalam angka 2021 (bangkalan regency in figures 2021).

Buang, A., Yusoff, N., Mat, N., & Khandaker, M. M. (2018). Effects of Fish Waste Extract on the Growth, Yield and Quality of Cucumis sativus L. J. Agrobiotech, 9(1S), 250–259.

Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs, 18(12).

Casaclang, J. R., Gregorio, A. C., Resuello, R. B., Reyes, C. J. A., Bernardo-Fernandez, J., & Gonzales-Plasus, M. M. (2017). Fish hydrolysate derived from fish waste increased the growth of Kappaphycus Alvarezii. AACL Bioflux, 10(5), 1150–1156.

Choe, U., Mustafa, A. M., Lin, H., Choe, U., & Sheng, K. (2020). Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue. Bioresource Technology, 297, 122542.

Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 1–39.

Dai, H., Li, N., Wang, Y., & Zhao, X. (2022). The Analysis of Three Main Investment Criteria: NPV IRR and Payback Period. Atlantic Press, 648(Icfied), 185–189.

Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., & Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3), 81–88.

Dubey, R., Joshi, D., & Bansal, R. C. (2016). Optimization of Solar Photovoltaic Plant and Economic Analysis. Electric Power Components and Systems, 44(18), 2025–2035.

Efrida Lubis, Rini, S., Syofia, I., & Yoga Pradana, G. (2021). Use Of Liquid Organic Fertilizer Fish Waste And Chicken Manure Fertilizer On The Production Of Pumpkin (Cucurbita Moschata). International Journal of Science, Technology & Management, 2(5), 1775–1779.

Hameed, R. T., Sarhan, S., & Mustafa, H. H. (2018). Synthesis of Liquid Organic Fertilizers from the Waste of Fishs. Journal of Engineering and Applied Sciences, 13(13), 10621–10626.

Hamouda, R. (2016). Some Physical and Chemical Properties of Bio-fertilizers. Journal of Fertilizers & Pesticides, 07(01), 1–6.

Ifa, L., Yani, S., Nurjannah, N., Darnengsih, D., Rusnaenah, A., Mel, M., Mahfud, M., & Kusuma, H. S. (2020). Techno-economic analysis of bio-briquette from cashew nut shell waste. Heliyon, 6(9), e05009.

Illera-Vives, M., Seoane Labandeira, S., Brito, L. M., López-Fabal, A., & López-Mosquera, M. E. (2015). Evaluation of compost from seaweed and fish waste as a fertilizer for horticultural use. Scientia Horticulturae, 186, 101–107.

Kang, J. H., Jung, H. Y., & Kim, J. K. (2018). Complete reuse of raw fishmeal wastewater: Evidence from a field cultivation study and economic analysis. In Environmental Engineering Research (Vol. 23, Issue 3).

Kara, K., Ouanji, F., Lotfi, E. M., Mahi, M. El, Kacimi, M., & Ziyad, M. (2018). Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egyptian Journal of Petroleum, 27(2), 249–255.

Kim, J. K. (2011). Cost-effectiveness of converting fish waste into liquid fertilizer. Fisheries and Aquatic Sciences, 14(3), 230–233.

KKP. (2021). Statistik KKP.

L Aranganathan, R. R. S. . (2011). Management of Environmental Quality : An International Journal Article information : Management of Environmental Quality, 27(1), 93–103.

Mahboob, S. (2015). Isolation and characterization of collagen from fish waste material- skin, scales and fins of Catla catla and Cirrhinus mrigala. Journal of Food Science and Technology, 52(7), 4296–4305.

Maktoof, A. A., Elherarlla, R. J., & Ethaib, S. (2020). Identifying the nutritional composition of fish waste, bones, scales, and fins. IOP Conference Series: Materials Science and Engineering, 871(1).

Matos Silva, C., Serro, J., Dinis Ferreira, P., & Teotónio, I. (2019). The socioeconomic feasibility of greening rail stations: a case study in lisbon. Engineering Economist, 64(2), 167–190.

Mozumder, M. M. H., Uddin, M. M., Schneider, P., Raiyan, M. H. I., Trisha, M. G. A., Tahsin, T. H., & Newase, S. (2022). Sustainable Utilization of Fishery Waste in Bangladesh—A Qualitative Study for a Circular Bioeconomy Initiative. Fishes, 7(2), 1–21.

Murali, S., Krishnan, V. S., Amulya, P. R., Alfiya, P. V., Delfiya, D. S. A., & Samuel, M. P. (2021). Energy and water consumption pattern in seafood processing industries and its optimization methodologies. Cleaner Engineering and Technology, 4, 100242.

Oladigbolu, J. O., Al-Turki, Y. A., & Olatomiwa, L. (2021). Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alexandria Engineering Journal, 60(6), 5547–5565.

PLN. (2020). Statistik PLN 2020 (PLN Statistics 2020).

Prasadi, O., & Triwuri, N. A. (2022). Study Of Nutrient Potential Waste Of Catfish , Cow Dung , And Ketapang Leaves As Solid Organic Fertilizer ( POP ). JUATIKA (Jurnal Agronomi Tanaman Tropika), 4(1), 131–138.

Radziemska, M., Vaverková, M. D., Adamcová, D., Brtnický, M., & Mazur, Z. (2019). Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste and Biomass Valorization, 10(9), 2537–2545.

Rahmatullah, R., Hasnudi, Mirwandhono, E., Patriani, P., Ginting, N., & Siregar, G. A. W. (2020). The effects of fermentation time and em4 dose on nutrient content of kepok’s peel as animal feed. Journal of Physics: Conference Series, 1542(1).

Rinaldi, R., Bathara, L., & Hamid, H. (2015). Analisis Perkembangan Produksi Perikanan Budidaya di Kabupaten Rokan Hulu Provinsi Riau. Jurnal Online Mahasiswa Fakultas Perikanan Dan Ilmu Kelautan Universitas Riau, 2(1), 1–8.

Sahu, B. B., Paikaray, N. K., Paikaray, A., Agnibesh, A., Mohapatra, S., & Jayasankar, P. (2016). Fish Waste Bio-Refinery Products: Its application in Organic Farming. International Journal of Environment, Agriculture and Biotechnology, 1(4), 837–843.

Satyasai K.J.S. (2014). Application of Modified Internal Rate of Return Method for. Agricultural Economic Research Review, 22(1), 401–406.

Sharma, K. K., Mohapatra, B. C., Das, P. C., Sarkar, B., & Chand, S. (2013). Water budgets for freshwater aquaculture ponds with reference to effluent volume. Agricultural Sciences, 04(08), 353–359.

Shaviklo, A. R. (2015). Development of fish protein powder as an ingredient for food applications: a review. Journal of Food Science and Technology, 52(2), 648–661.

Shi, S., Li, J., Guan, W., & Blersch, D. (2018). Nutrient value of fish manure waste on lactic acid fermentation by Lactobacillus pentosus. RSC Advances, 8(55), 31267–31274.

Standar Nasional Indonesia. (2006). Pupuk Cair Hasil Samping Proses Asam Amino (SNI 02-4958-2006).

Sugandi, W. K., & Wahyu, A. (2019). Analisis Kelayakan Ekonomi Mesin Pencacah Rumput Gajah Tipe Reel. Agrikultura, 29(3), 144.

Tajerin, T., Yusuf, R., Sastrawidjaja, S., & Asnawi, A. (2017). Keterkaitan Sektor Perikanan Dalam Perekonomian Indonesia: Pendekatan Model Input-Output. Jurnal Sosial Ekonomi Kelautan Dan Perikanan, 2(1), 19.

Taragusti, A. S., Santanumurti, M. B., Rahardja, B. S., & Prayogo. (2019). Effectiveness of Nitrobacter on the specific growth rate, survival rate and feed conversion ratio of dumbo catfish Clarias sp. with density differences in the aquaponic system. IOP Conference Series: Earth and Environmental Science, 236(1).

Thamer, A. A., & Issa Al Haboubi, N. A. (2020). Study the effect of different types impellers on the transfer coefficient in photobioreactor. IOP Conference Series: Materials Science and Engineering, 928(2).

Tike Dwi Putri, Dwi Putro Priandi, & Sriati. (2014). Dampak Usaha Perikanan Budidaya Terhadap Kondisi Lingkungan Dan Sosial Ekonomi Masyarakat Pada Lahan Pasang Surut Kabupaten Banyuasin Provinsi Sumatera Selatan. Jurnal Kuakultur Rawa Indonesia, 2(1), 43–54.

Tiwow, V. M. A., & Abram, P. H. (2019). Production of Liquid and Solid Organic Fertilizer from Tilapia Fish ( Oreochromismossambicus ) Wasteusing “ Bakasang ” Traditional Fermentation Technology. International Journal of Engineering and Advanced Technology (IJEAT), 3, 885–888.

Venugopal, V. (2021). Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Frontiers in Sustainable Food Systems, 5(June), 1–21. h/fsufs.2021.611835




  • There are currently no refbacks.

Copyright (c) 2022 Nizar Amir

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.