Unjuk Kerja Performa Turbin Arus Laut Sumbu Vertikal Pada Berbagai Bentuk Sudu Unik

Rizki Mendung Ariefianto, Rini Nur Hasanah, Wijono Wijono

Abstract

Efficiency and self-starting capability performances are the main problems in vertical axis turbines. By purposing improves its performance, vertical axis turbines have been developed with various models. One of the developments of this model is to design the turbine blades into unique shapes. This research aims to determine the performance of some unique blade vertical axis turbines conditioned on the same parameters, especially if applied in a marine environment. Turbines with helical blade (HB), eggbeater-shaped blade (ESB), diamond-shaped blade (DSB), Y-shaped blade (YSB), and arrow-shaped blade (ASB) were investigated based on efficiency and self-starting capability using QBlade software. Good performance symmetrical foils such as NACA 634021 are also applied to each turbine. The simulation results show that from the aspect of efficiency performance, turbine ASB more than HB more than ESB more than DSB more than YSB. Meanwhile, in the aspect of self-starting capability performance, the sequence is similar to efficiency performance, based on the two approaches applied. The highest efficiency achieved by the ASB turbine is 0.391 at the lowest tip speed ratio of λ = 4. The ASB turbine also achieves the best self-starting performance, which has a minimum static torque coefficient of 0.00155 and can produce the required power at the lowest marine current speed of 0.806 m/s. This performance brings the ASB turbine to produce a rated power of 52.52 kW, or more than twice the power production of the lowest efficiency turbine and has an average power gain of 3.75 kW per 0.2 m/s.

Keywords

vertical axis marine current turbine, unique-shaped blade, efficiency, self-starting

References

Ahmad, A., Loya, A., Ali, M., Iqbal, A., Baig, F. M., & Afzal, A. M. (2020). Roadside Vertical Axis Wind Turbine (VAWT): An Effective Evolutionary Design for Australian Highway Commuters with Minimum Dynamic Stall. Engineering, 12(09), 601–616. https://doi.org/10.4236/eng.2020.129042

Akour, S. N., Al-Heymari, M., Ahmed, T., & Khalil, K. A. (2018). Experimental and theoretical investigation of micro wind turbine for low wind speed regions. Renewable Energy, 116, 215–223. https://doi.org/10.1016/j.renene.2017.09.076

Antheaume, S., Maitre, T., & Achard, J.-L. (2007). An Innovative Modelling Approach To Investigate the Efficiency of Cross Flow Water Turbine Farms. 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, 52(66).

Battisti, L., Persico, G., Dossena, V., Paradiso, B., Castelli, M. R., Brighenti, A., & Benini, E. (2018). Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renewable Energy, 125, 425–444. https://doi.org/10.1016/j.renene.2018.02.098

Cai, C., Zuo, Z., Liu, S., & Wu, Y. (2015). Numerical investigations of hydrodynamic performance of hydrofoils with leading-edge protuberances. Advances in Mechanical Engineering, 7(7), 1–11. https://doi.org/10.1177/1687814015592088

Cho, S. Y., Choi, S. K., Kim, J. G., & Cho, C. H. (2018). An experimental study of the optimal design parameters of a wind power tower used to improve the performance of vertical axis wind turbines. Advances in Mechanical Engineering, 10(9), 1–10. https://doi.org/10.1177/1687814018799543

Divakaran, U., Ramesh, A., Mohammad, A., & Velamati, R. K. (2021). Effect of helix angle on the performance of helical vertical axis wind turbine. Energies, 14(2). https://doi.org/10.3390/en14020393

Dropkin, A., Custodio, D., Henoch, C. W., & Johari, H. (2012). Computation of flowfield around an airfoil with leading-edge protuberances. Journal of Aircraft, 49(5), 1345–1355. https://doi.org/10.2514/1.C031675

Gorban’, A. N., Gorlov, A. M., & Silantyev, V. M. (2001). Limits of the turbine efficiency for free fluid flow. Journal of Energy Resources Technology, Transactions of the ASME, 123(4), 311–317. https://doi.org/10.1115/1.1414137

Guo, W., Kang, H. gui, Chen, B., Xie, Y., & Wang, Y. (2016). Numerical and experimental study of the 3D effect on connecting arm of vertical axis tidal current turbine. China Ocean Engineering, 30(1), 83–96. https://doi.org/10.1007/s13344-015-0080-5

Hammar, L., Eggertsen, L., Andersson, S., Ehnberg, J., Arvidsson, R., Gullström, M., & Molander, S. (2015). A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish. PLoS ONE, 10(3), 1–25. https://doi.org/10.1371/journal.pone.0117756

Han, D., Heo, Y. G., Choi, N. J., Nam, S. H., Choi, K. H., & Kim, K. C. (2018). Design, fabrication, and performance test of a 100-W helical-blade vertical-axis wind turbine at low tip-speed ratio. Energies, 11(6), 1–17. https://doi.org/10.3390/en11061517

Han, S. H., Park, J. S., Lee, K. S., Park, W. S., & Yi, J. H. (2013). Evaluation of vertical axis turbine characteristics for tidal current power plant based on in situ experiment. Ocean Engineering, 65, 83–89. https://doi.org/10.1016/j.oceaneng.2013.03.005

Hosseini, A., & Goudarzi, N. (2019). Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy Conversion and Management, 189(November 2018), 49–59. https://doi.org/10.1016/j.enconman.2019.03.068

Janon, A. (2020). Torque coefficient analysis of a novel direct-drive parallel-stream counter-rotating darrieus turbine system. Renewable Energy, 147, 110–117. https://doi.org/10.1016/j.renene.2019.08.118

Kirke, B. K. (1998). Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications. Griffith University, Nathan, QLD, Australia.

Krishnaraj, J., Ellappan, S., & Kumar, M. A. (2019). Additive Manufacturing of a Gorlov Helical Type Vertical Axis Wind Turbine. International Journal of Engineering and Advanced Technology, 9(2), 2639–2644. https://doi.org/10.35940/ijeat.b4116.129219

Mahmuddin, F. (2017). Rotor Blade Performance Analysis with Blade Element Momentum Theory. Energy Procedia, 105, 1123–1129. https://doi.org/10.1016/j.egypro.2017.03.477

Marsh, P., Ranmuthugala, D., Penesis, I., & Thomas, G. (2015). Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renewable Energy, 81, 926–935. https://doi.org/10.1016/j.renene.2015.03.083

Moghimi, M., & Motawej, H. (2020). Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines. Sustainable Energy Technologies and Assessments, 37(November 2019). https://doi.org/10.1016/j.seta.2019.100616

Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy, 162, 1087–1103. https://doi.org/10.1016/j.renene.2020.08.105

Mukhtasor, Susilohadi, Erwandi, Pandoe, W., Iswadi, A., Firdaus, A. M., Prabowo, H., Sudjono, E., Prasetyo, E., & Ilahude, D. (2014). Potensi Energi Laut Indonesia.

Patel, V., Eldho, T. I., & Prabhu, S. V. (2017). Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. International Journal of Marine Energy, 17, 110–135. https://doi.org/10.1016/j.ijome.2017.01.007

Persico, G., Dossena, V., Paradiso, B., Battisti, L., Brighenti, A., & Benini, E. (2016). Investigation for H-Shaped and Troposkien Architectures. Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition, 1–12.

Qian, P., Feng, B., Liu, H., Tian, X., Si, Y., & Zhang, D. (2019). Review on configuration and control methods of tidal current turbines. Renewable and Sustainable Energy Reviews, 108(March), 125–139. https://doi.org/10.1016/j.rser.2019.03.051

Rawlings, G. W. (2008). Parametric Characterization of an Experimental Vertical Axis Hydro Turbine (Issue April). University of British Columbia.

Satrio, D., & Utama, I. K. A. P. (2021). Experimental investigation into the improvement of self-starting capability of vertical-axis tidal current turbine. Energy Reports, 7, 4587–4594. https://doi.org/10.1016/j.egyr.2021.07.027

Satrio, D., Utama, I. K. A. P., & Mukhtasor. (2018). Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine. Journal of Marine Science and Application, 17(2), 208–215. https://doi.org/10.1007/s11804-018-0017-5

Scheurich, F., Fletcher, T. M., & Brown, R. E. (2010). The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January, 1–16. https://doi.org/10.2514/6.2010-1579

Su, J., Chen, Y., Han, Z., Zhou, D., Bao, Y., & Zhao, Y. (2020). Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines. Applied Energy, 260(December 2019), 114326. https://doi.org/10.1016/j.apenergy.2019.114326

Tafrant, D., & Faizal, M. (2016). The Effect of Fluid Flow Current To 30° Blades Achard Turbine. Journal of Mechanical Science and Engineering (JMSE), 3(1), 7–12.

Talukdar, P. K., Kulkarni, V., & Saha, U. K. (2018). Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation. Renewable Energy, 127, 158–167. https://doi.org/10.1016/j.renene.2018.04.052

Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., & Sopian, K. (2015). Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renewable Energy, 75, 560–571. https://doi.org/10.1016/j.renene.2014.10.039

Zahariea, D., Husaru, D. E., & Husaru, C. M. (2019). Aerodynamic and structural analysis of a small-scale horizontal axis wind turbine using QBlade. IOP Conference Series: Materials Science and Engineering, 595(1). https://doi.org/10.1088/1757-899X/595/1/012042

Zanette, J., Imbault, D., & Tourabi, A. (2010). A design methodology for cross flow water turbines. Renewable Energy, 35(5), 997–1009. https://doi.org/10.1016/j.renene.2009.09.014

DOI

https://doi.org/10.21107/rekayasa.v15i1.13572

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Rizki Mendung Ariefianto, Rini Nur Hasanah, Wijono Wijono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.