Model Gelombang di sekitar Hexagonal Artificial Reef sebagai Submerged Breakwater Menggunakan DUALSPHYSICS
Abstract
The functions and uses of artificial reef have evolved from a method of coral reefs restoration to a coastal protection system. Artificial reef can reduce the hydraulic load on the coast to the level required to maintain shoreline balance. Various materials and shape of artificial reefs have been introduced. This paper discussed the wave transmission over hexagonal-shaped artificial reef with 6 holes on each side. The study was conducted using the Smoothed Particle Hydrodynamic (SPH) method integrated in DualSPHysics software to see the effect of gaps between structures with a predetermined configuration to the value of the transmission coefficient (Kt). It was found that the configuration with no gap was able to absorb waves better than the configuration with a gap of 0.15 m and 0.112 m based on the Kt value obtained. In terms of hydrodynamics, it was found that: (1) The increment of the wave steepness, the smaller the Kt value obtained, (2) The larger the wave height, the smaller the Kt value at 0.1 m freeboard depth, while on the freeboard with a depth of 0.2 m and 0.3 m, it was found that the greater the wave height, the greater the Kt value, (3) the increment of the wave period, the Kt were higher, and also (4) the higher the freeboard, the higher the Kt.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Akhwady, R. (2012). Kinerja Terumbu Buatan Silinder berongga (Bottle Reef TM ) sebagai Pemecah Gelombang Ambang Terbenam. Institut Teknologi Sepuluh Nopember.
Crespo, A. J. C., Domínguez, J. M., Rogers, B. D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., García-Feal, O. (2015). DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187, 204–216. https://doi.org/10.1016/j.cpc.2014.10.004
Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389. https://doi.org/10.1093/mnras/181.3.375
Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. A., & Crespo, A. J. C. (2010). State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, 48(SUPPL. 1), 6–27. https://doi.org/10.1080/00221686.2010.9641242
Harris, L. E. (1995). Engineering design of artificial reefs. Oceans Conference Record (IEEE), 1, 1139–1148. https://doi.org/10.1109/oceans.1995.528585
Hirose, N., Watanuki, A., & Saito, M. (2002). New type units for artificial reef development of ecofriendly artificial reefs and the effectiveness thereof. Proceedings 30th International Navigation Congress, PIANC.
Huan, V. N. P., Harahap, I. S. H., & Alaloul, W. S. (2018). Modelling of Tsunami Due to Submarine Landslide by Smoothed Particle Hydrodynamics Method. MATEC Web of Conferences, 203, 1–6. https://doi.org/10.1051/matecconf/201820301001
Liua, Y., Zhaoa, Y. P., Dong, G. H., Guan, C. T., Cui, Y., & Xu, T. J. (2013). A study of the flow field characteristics around star-shaped artificial reefs. Journal of Fluids and Structures, 39, 27–40. https://doi.org/10.1016/j.jfluidstructs.2013.02.018
Ren, B., He, M., Li, Y., & Dong, P. (2017). Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction. Applied Ocean Research, 67, 277–290. https://doi.org/10.1016/j.apor.2017.07.011
Rogers, B. D., Dalrymple, R. A., & Stansby, P. K. (2009). Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 48(extra), 135–141. https://doi.org/http://dx.doi.org/10.1080/00221686.2010.9641254
Seaman, W. (2000). Artificial reef evaluation: With application to natural marine habitats. In Artificial Reef Evaluation: With Application to Natural Marine Habitats. https://doi.org/10.1016/s0165-7836(03)00126-7
Srisuwan, C., & Rattanamanee, P. (2015). Modeling of Seadome as artificial reefs for coastal wave attenuation. Ocean Engineering, 103, 198–210. https://doi.org/10.1016/j.oceaneng.2015.04.069
Sudoto. (2008). Karakteristik Transmisi Gelombang Yang Melalui Terumbu Buatan Kubus Berongga Sebagai Submerged Breakwater. Institut Teknologi Sepuluh Nopember.
Sulaiman, D. M., Effendi, S. S., Azhar, R. M., & Suprapto. (2014). Rehabilitasi Pantai Dengan Pegar Bercelah Studi Kasus Sigandu, Batang, Jawa Tengah.
Sulaiman, D. M., Sudjana, M. E., Abimanyu, A., Junarsa, D., & Azhar, R. M. (2011). Respon garis pantai karena pemecah gelombang ambang rendah di pantai anyer, serang, banten. HATHI Seminar, 1–12.
Surendro, B., Yuwono, N., & Darsono, S. (2015). Transmisi dan Refleksi Gelombang pada Pemecah Gelombang Ambang Rendah Ganda Tumpukan Batu. Media Komunikasi Teknik Sipil, 20(2), 179–187. https://doi.org/10.12777/mkts.20.2.179-187
Triatmodjo, B. (2011). Teknik Pantai. Yogyakarta: Beta Offset.
Voorde, M. Ten, Carmo, J. S. A. Do, & Neves, M. D. G. (2009). Multi-functional artificial reefs for coastal protection. In C. A. Hudspeth & T. E. Reeve (Eds.), Agricultural Runoff, Coastal Engineering and Flooding (pp. 153–201). New York: Nova Science Publishers, Inc.
Winarto, A. (2017). Pengaruh Konfigurasi Terumbu Buatan Bentuk Hexagonal pada Transmisi Gelombang. Institut Teknologi Sepuluh Nopember.
Wirayuhanto, H., & Armono, H. D. (2021). Pengaruh Konfigurasi Terumbu Buatan Bentuk Heksagonal pada Kemampuan Peredaman Gelombang. Rekayasa, 14(1), 106–113. https://doi.org/10.21107/rekayasa.v14i1.10042
DOI
https://doi.org/10.21107/rekayasa.v15i1.13484Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Haryo Dwito Armono, Adelbert - Manurung, Sujantoko Sujantoko
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.