Studi Gasifikasi Pengembangan Tongkol Jagung dengan Jerami Padi Menggunakan Reaktor Downdraft Dengan Dua Masukan Udara Tekan

Ibnu Irawan, Achmad Kusairi Samlawi, Hairil Budiarto

Abstract

The production of corn and rice produced by farmers in East Java has the potential to cause agricultural waste, therefore corn cobs are waste that requires special processing in order to be used optimally. Agricultural waste corn cobs and rice straw can be converted into gas fuel (Syngas). The purpose of this study was to determine the performance of gasification seen from the temperature distribution and composition of combustible gases such as CO, H2 and CH4. The downdraft gasifier type is used and applies the AR and E.R ratio to the temperature. For the pyrolysis and oxidation regions, the intake air varies (ARpir-oxi) 80%; 70%; and 0% at 14.5 air intake; 19.3; and 24.1 Nm3/hour from E.R 0.3, 0.4, and 0.5. Air intake in the adjust area using a valve. Temperature measurement using the type K thermocouple. The results show that the maximum temperature using ARpir-oks = 80%, the drying zone temperature is 187°C, the pyrolysis zone is 488°C, the oxidation zone is 895°C and the reduction zone is 585°C. Meanwhile, the highest production of CO gas is 20.50% and H2 gas is 14.55% using an ER of 0.4. Meanwhile, CH4 decreased for all ER values using ARpir-oks = 80%.

Keywords

corn cobs, rice straw, downdraft reactor, compressed air intakes, syngas

References

Basu, P. (2010). Biomass Characteristics. In Biomass Gasification Design Handbook (First Edit). © 2010 Elsevier Inc. https://doi.org/10.1016/b978-0-12- 374988-8.00002-7

Bui, T., Loof, R., & Bhattacharya, S. C. (1994). Multi- stage reactor for thermal gasification of wood. Energy, 19 (4) 397–404 pp.

https://doi.org/10.1016/0360-5442(94)90118-X

Gafur, A. (2017). Studi Eksperimantal Gasifikasi Pelepah Kelapa Sawit untuk Meningkatkan Performansi Reaktor Downdraft dengan Masukan Udara Bertingkat.

Khonde, R., & Chaurasia, A. (2016). Rice husk gasification in a two-stage fixed-bed gasifier: Production of hydrogen rich syngas and kinetics. International Journal of Hydrogen Energy, 41(21), 8793–8802. https://doi.org/10.1016/j.ijhydene.2016.03.138

Li, Z., & Xue, Z. (2015). Reviewe of Biomass Energy utilization technology. Ic3me, 1147–1150. https://doi.org/10.2991/ic3me-15.2015.222

Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/10.1016/j.jechem.2015.11.005

Nhuchhen, D. R., & Salam, P. A. (2012). Experimental study on two-stage air supply downdraft gasifier and dual fuel engine system. Biomass Conversion and Biorefinery, 2(2), 159–168. https://doi.org/10.1007/s13399-012-0041-7

Rhofita, E. I. (2020). The Characterization of Rice Straw Briquette as an Alternative Fuel in Indonesia. 304–309.

https://doi.org/10.5220/0008908203040309

Šulc, J., Štojdl, J., Richter, M., Popelka, J., Svoboda, K., Smetana, J., Vacek, J., Skoblja, S., & Buryan, P. (2012). Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation? Waste Management, 32(4), 692–700.https://doi.org/10.1016/j.wasman.2011.08.015

Surjosatyo, A., Vidian, F., Nugroho, Y. S., Indonesia, U., & Sriwijaya, U. (2010). a Review on Gasifier Modification for Tar Reduction in Biomass Gasification. 31, 62–77.

Wang, Y., Wu, K., & Sun, Y. (2018). Effects of raw material particle size on the briquetting process of rice straw. Journal of the Energy Institute, 91(1), 153–162.

https://doi.org/10.1016/j.joei.2016.09.002

DOI

https://doi.org/10.21107/rekayasa.v15i1.12895

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ibnu Irawan, Achmad Kusairi Samlawi, Hairil Budiarto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.