Classification of Dermoscopic Image of Skin Cancer Using the GLCM Method and Multi-SVM Algorithm

Riyan Latifahul Hasanah, Dwiza Riana

Abstract

The development of abnormal skin pigment cells can cause a skin cancer called melanoma. Melanoma can be cured if diagnosed and treated in its early stages. Various studies using various technologies have been developed to conduct early detection of melanoma. This research was conducted to diagnose melanoma skin cancer with digital image processing techniques on the dermoscopic image of skin cancer. The diagnosis is made by classifying dermoscopic images based on the types of Common Nevus, Atypical Nevus or Melanoma. Pre-processing is done by changing the RGB image to grayscale (grayscaling), smoothing image using median filtering, and image segmentation based on binary images of skin lesions. The value of Contrast, Correlation, Energy and Homogeneity obtained from the texture feature extraction of the GLCM method is used in the next step, which is the classification process with the Multi-SVM algorithm. The proposed research method shows high accuracy results in diagnosing skin cancer

Keywords

skin pigment, cancer, image analysis, Mult-SVM algorithm

Full Text:

PDF

References

Abbes, W., & Sellami, D. (2017). Automatic Skin Lesions Classification Using Ontology-Based Semantic Analysis of Optical Standard Images. Procedia Computer Science, 112, 2096–2105. https://doi.org/10.1016/j.procs.2017.08.226

Aljanabi, M., Ozok, Y. E., Rahebi, J., & Abdullah, A. S. (2018). Skin Lesion Segmentation Method for Dermoscopy Images Using Artificial Bee Colony Algorithm. Symmetry, 10(237), 2–18. https://doi.org/10.3390/sym10080347

Amin, J., Sharif, A., Gul, N., Anjum, M. A., Nisar, M. W., Azam, F., & Bukhari, S. A. C. (2020). Integrated Design of Deep Features Fusion for Localization and Classification of Skin Cancer. Pattern Recognition Letters, 131. https://doi.org/10.1016/j.patrec.2019.11.042

Bharadwaj, R., Haloi, J., & Medhi, S. (2019). Topical Delivery of Methanolic Root Extract of Annona Reticulata Against Skin Cancer. South African Journal of Botany, 124, 484–493. https://doi.org/10.1016/j.sajb.2019.06.006

Brunssen, A., Waldmann, A., Eisemann, N., & Katalinic, A. (2016). Impact of Skin Cancer Screening and Secondary Prevention Campaigns on Skin Cancer Incidence and Mortality: A Systematic Review. Journal of American Dermatology, 76(1), 129–139. https://doi.org/10.1016/j.jaad.2016.07.045

Celebi, M. E., Kingravi, H. A., Uddin, B., Iyatomi, H., Aslandogan, Y. A., Stoecker, W. V, & Moss, R. H. (2007). A Methodological Approach to the Classification of Dermoscopy Images. Computerized Medical Imaging and Graphics, 31, 362–373. https://doi.org/10.1016/j.compmedimag.2007.01.003

Chatterjee, S., Dey, D., & Munshi, S. (2019). Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Computer Methods and Programs in Biomedicine, 178, 201–218. https://doi.org/10.1016/j.cmpb.2019.06.018

Dalila, F., Zohra, A., Reda, K., & Hocine, C. (2017). Segmentation and Classification of Melanoma and Benign Skin Lesions. Optik - International Journal for Light and Electron Optics, 140. https://doi.org/10.1016/j.ijleo.2017.04.084

Dermnetnz. (n.d.).

Esfahani, E. N., Samavi, S., Karimi, N., Soroushmehr, S. M. R., Jafari, M. H., Ward, K., & Najarian, K. (2016). Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network. Anual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–4. https://dental-revue.ru/Other/2003-11-02/nasresfahani2016.pdf%0A

Filho, P. P. R., Peixoto, S. A., Nóbrega, R. V. M. da, Hemanth, D. J., Medeiros, A. G., Sangaiah, A. K., & Albuquerque, V. H. C. d. (2018). Automatic histologically-closer classification of skin lesions. Computerized Medical Imaging and Graphics, 68. https://doi.org/10.1016/j.compmedimag.2018.05.004

Garcia-arroyo, J. L., & Garcia-zapirain, B. (2019). Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Computer Methods and Programs in Biomedicine, 168, 11–19. https://doi.org/10.1016/j.cmpb.2018.11.001

Hadi, S., Tumbelaka, B. Y., Irawan, B., & Rosadi, R. (2015). Implementing DEWA Framework for Early Diagnosis of Melanoma. International Conference on Computer Science and Computational Intelligence, 59, 410–418. https://doi.org/10.1016/j.procs.2015.07.555

Halk Sağlığı Genel Müdürlüğü. (n.d.).

Hameed, N., Shabut, A. M., Ghosh, M. K., & Hossain, M. A. (2020). Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Systems With Applications, 141, 112961. https://doi.org/10.1016/j.eswa.2019.112961

Hawas, A. R., Guo, Y., Du, C., Polat, K., & Ashour, A. S. (2019). OCE-NGC: A neutrosophic graph cut algorithm using optimized clustering estimation algorithm for dermoscopic skin lesion segmentation. Applied Soft Computing Journal, 86, 105931. https://doi.org/10.1016/j.asoc.2019.105931

Jain, S., Jagtap, V., & Pise, N. (2015). Computer Aided Melanoma Skin Cancer Detection Using Image Processing. International Conference on Intelligent Computing, Communication & Convergence, 48, 735–740. https://doi.org/10.1016/j.procs.2015.04.209

Khan, M. A., Sharif, M., Akram, T., Ahmad, S., Bukhari, C., & Nayak, R. S. (2019). Developed Newton-Raphson Based Deep Features Selection Framework for Skin Lesion Recognition. Pattern Recognition Letters, 129. https://doi.org/10.1016/j.patrec.2019.11.034

Lajnef, T., Chaibi, S., Ruby, P., Aguera, P., Eichenlaub, J., Samet, M., Kachouri, A., & Jerbi, K. (2015). Learning Machines and Sleeping Brains : Automatic Sleep Stage Classification Using Decision-Tree Multi-Class Support Vector Vachines. Journal of Neuroscience Methods, 250, 94–105. https://doi.org/10.1016/j.jneumeth.2015.01.022

Mendonca, T., Ferreira, P. M., Marques, J. S., Marcal, A. R. S., & Rozeira, J. (2013). PH 2 - A Dermoscopic Image Database for Research and Benchmarking. 35th Annual International Conference of the IEEE EMBS, 5437–5440. https://ieeexplore.ieee.org/document/6610779?tp=&arnumber=6610779&url=http:%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6610779

Mishra, N. K., & Celebi, M. E. (2016). An Overview of Melanoma Detection in Dermoscopy Images Using Image Processing and Machine Learning. https://arxiv.org/abs/1601.07843

Odeh, S. M., & Baareh, A. K. M. (2016). A comparison of classification methods as diagnostic system: A case study on skin lesions. Computer Methods and Programs in Biomedicine, 137. https://doi.org/10.1016/j.cmpb.2016.09.012

Oktay Yıldız. (2019). Melanoma detection from dermoscopy images with deep learning methods: A comprehensive study. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(4), 2241–2260. https://www.researchgate.net/profile/Oktay_Yildiz3/publication/333931364_Derin_ogrenme_yontemleriyle_dermoskopi_goruntulerinden_melanom_tespiti_Kapsamli_bir_calisma/links/5d761945299bf1cb80932410/Derin-oegrenme-yoentemleriyle-dermoskopi-goeruentuelerinden

Pereira, P. M. M., Fonseca-pinto, R., Pedro, R., Assuncao, P. A. A., Tavora, L. M. N., Thomaz, L. A., & Faria, S. M. M. (2020). Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem. Biomedical Signal Processing and Control, 57, 101765. https://doi.org/10.1016/j.bspc.2019.101765

Polat, K., & Koc, K. O. (2020). Detection of Skin Diseases from Dermoscopy Image Using the combination of Convolutional Neural Network and One-versus-All. Journal of Artificial Intelligence and Systems, 2, 80–97. https://doi.org/10.33969/AIS.2020.21006

Preetha, K., & Jayanthi, S. K. (2018). GLCM and GLRLM Based Feature Extraction Technique in Mammogram Images. International Journal of Engineering & Technology, 7(2.21), 266–270. https://pdfs.semanticscholar.org/a079/a9af2799e03a511487e8ef311c9bd4f8006b.pdf

Rogers, J. A., & Balooch, G. (2016). A Restorative Synthetic Skin. Nature Materials, 15(8), 828–829. https://doi.org/10.1038/nmat4710

Serte, S., & Demirel, H. (2019). Gabor wavelet-based deep learning for skin lesion classification. Computers in Biology and Medicine, 113, 103423. https://doi.org/10.1016/j.compbiomed.2019.103423

Tan, T. Y., Zhang, L., & Lim, C. P. (2020). Knowledge-Based Systems Adaptive melanoma diagnosis using evolving clustering , ensemble and deep neural networks. Knowledge-Based Systems, 187, 104807. https://doi.org/10.1016/j.knosys.2019.06.015

Xie, F., Yang, J., Liu, J., Jiang, Z., Zheng, Y., & Wang, Y. (2019). Skin lesion segmentation using high-resolution convolutional neural network. Computer Methods and Programs in Biomedicine, 186, 105241. https://doi.org/10.1016/j.cmpb.2019.105241

Xu, J., Liu, X., Huo, Z., Deng, C., Nie, F., & Huang, H. (2017). Multi-Class Support Vector Machine via Maximizing Multi-Class Margins. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 3154–3160. https://par.nsf.gov/servlets/purl/10041961

DOI

https://doi.org/10.21107/rekayasa.v14i3.12213

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Riyan Latifahul Hasanah, Dwiza Riana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.