Techno-Economic Feasibility Assessment of Solar PV Water Pumping System In Dryland: Case Study In Madura
Abstract
Indonesia has enormous solar radiation potential, and it can be converted to electrical energy by utilizing solar PV systems. Mainly the irrigation of paddy rice fields in Indonesia dependent on a diesel-powered water pumping system. A solar PV system can replace this method, and it generates several benefits. The present study proposed the utilization of a solar PV system to drive the water pump based on a 100% renewable power supply. The technological and economic viability assessment of solar PV water pumping system to irrigate paddy rice filed at Telang village, Bangkalan, Indonesia, is investigated. The HOMER software has been used to generate the optimal configuration of a renewable system. Initial capital, net present cost, and cost of energy will evaluate as economic assessment criteria. The solar PV and diesel generator water pumping system also compared. The results showed that for water pumping systems, a solar PV system is more cost-effective than a diesel generator. It has lower annual operational and maintenance costs, 100% renewable energy penetration, and free energy cost.
Keywords
Full Text:
PDFReferences
Al-Badi, A., Yousef, H., Al Mahmoudi, T., Al-Shammaki, M., Al-Abri, A., & Al-Hinai, A. (2018). Sizing and modelling of photovoltaic water pumping system. International Journal of Sustainable Energy, 37(5), 415–427. https://doi.org/10.1080/14786451.2016.1276906
Badan Pusat Statistik Kabupaten Bangkalan. (n.d.). Retrieved April 13, 2021, from https://bangkalankab.bps.go.id/publication/2020/09/28/227ff7fe92e3088d54c7103e/kecamatan-kamal-dalam-angka-2020.html
Benghanem, M., Daffallah, K. O., Joraid, A. A., Alamri, S. N., & Jaber, A. (2013). Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia. Energy Conversion and Management, 65, 50–56. https://doi.org/10.1016/j.enconman.2012.08.013
Biswas, S., & Iqbal, M. T. (2018). Dynamic Modelling of a Solar Water Pumping System with Energy Storage. Journal of Solar Energy, 2018, 1–12. https://doi.org/10.1155/2018/8471715
CHAPTER 2: CROP WATER NEEDS. (n.d.). Retrieved April 13, 2021, from http://www.fao.org/3/s2022e/s2022e02.htm
Chueco-Fernández, F. J., & Bayod-Rújula, Á. A. (2010). Power supply for pumping systems in northern Chile: Photovoltaics as alternative to grid extension and diesel engines. Energy, 35(7), 2909–2921. https://doi.org/10.1016/j.energy.2010.03.022
Ezani, E., Masey, N., Gillespie, J., Beattie, T. K., Shipton, Z. K., & Beverland, I. J. (2018). Measurement of diesel combustion-related air pollution downwind of an experimental unconventional natural gas operations site. Atmospheric Environment, 189(June), 30–40. https://doi.org/10.1016/j.atmosenv.2018.06.032
Gao, Z., & Liu, J. (2016). Application of Photovoltaic Pumping Technology for Growing Paddy Rice in China. Irrigation and Drainage, 65(1), 3–8. https://doi.org/10.1002/ird.2003
Handayani, N. A., & Ariyanti, D. (2012). Potency of solar energy applications in Indonesia. International Journal of Renewable Energy Development, 1(2), 33–38. https://doi.org/10.14710/ijred.1.2.33-38
Al-Badi, A., Yousef, H., Al Mahmoudi, T., Al-Shammaki, M., Al-Abri, A., & Al-Hinai, A. (2018). Sizing and modelling of photovoltaic water pumping system. International Journal of Sustainable Energy, 37(5), 415–427. https://doi.org/10.1080/14786451.2016.1276906
Badan Pusat Statistik Kabupaten Bangkalan. (n.d.). Retrieved April 13, 2021, from https://bangkalankab.bps.go.id/publication/2020/09/28/227ff7fe92e3088d54c7103e/kecamatan-kamal-dalam-angka-2020.html
Benghanem, M., Daffallah, K. O., Joraid, A. A., Alamri, S. N., & Jaber, A. (2013). Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia. Energy Conversion and Management, 65, 50–56. https://doi.org/10.1016/j.enconman.2012.08.013
Biswas, S., & Iqbal, M. T. (2018). Dynamic Modelling of a Solar Water Pumping System with Energy Storage. Journal of Solar Energy, 2018, 1–12. https://doi.org/10.1155/2018/8471715
CHAPTER 2: CROP WATER NEEDS. (n.d.). Retrieved April 13, 2021, from http://www.fao.org/3/s2022e/s2022e02.htm
Chueco-Fernández, F. J., & Bayod-Rújula, Á. A. (2010). Power supply for pumping systems in northern Chile: Photovoltaics as alternative to grid extension and diesel engines. Energy, 35(7), 2909–2921. https://doi.org/10.1016/j.energy.2010.03.022
Ezani, E., Masey, N., Gillespie, J., Beattie, T. K., Shipton, Z. K., & Beverland, I. J. (2018). Measurement of diesel combustion-related air pollution downwind of an experimental unconventional natural gas operations site. Atmospheric Environment, 189(June), 30–40. https://doi.org/10.1016/j.atmosenv.2018.06.032
Gao, Z., & Liu, J. (2016). Application of Photovoltaic Pumping Technology for Growing Paddy Rice in China. Irrigation and Drainage, 65(1), 3–8. https://doi.org/10.1002/ird.2003
Handayani, N. A., & Ariyanti, D. (2012). Potency of solar energy applications in Indonesia. International Journal of Renewable Energy Development, 1(2), 33–38. https://doi.org/10.14710/ijred.1.2.33-38
Julian, M., Bassil, N., & Dellagi, S. (2020). Lebanon’s electricity from fuel to solar energy production. Energy Reports, 6(April), 420–429. https://doi.org/10.1016/j.egyr.2020.08.061
Kolhe, M., Joshi, J. C., & Kothari, D. P. (2004). Performance analysis of a directly coupled photovoltaic water-pumping system. IEEE Transactions on Energy Conversion, 19(3), 613–618. https://doi.org/10.1109/TEC.2004.827032
Mahmoud, E., & el Nather, H. (2003). Renewable energy and sustainable developments in Egypt: Photovoltaic water pumping in remote areas. Applied Energy, 74(1–2), 141–147. https://doi.org/10.1016/S0306-2619(02)00140-X
Meah, K., Fletcher, S., & Ula, S. (2008). Solar photovoltaic water pumping for remote locations. Renewable and Sustainable Energy Reviews, 12(2), 472–487. https://doi.org/10.1016/j.rser.2006.10.008
Mokeddem, A., Midoun, A., Kadri, D., Hiadsi, S., & Raja, I. A. (2011). Performance of a directly-coupled PV water pumping system. Energy Conversion and Management, 52(10), 3089–3095. https://doi.org/10.1016/j.enconman.2011.04
NASA POWER | Prediction Of Worldwide Energy Resources. (n.d.). Retrieved April 13, 2021, from https://power.larc.nasa.gov/
Nasir, A. (2019). Design and Simulation of Photo-voltaic Water Pumping System for Irrigation. Advances in Applied Sciences, 4(2), 59. https://doi.org/10.11648/j.aas.20190402.14
Odeh, I., Yohanis, Y. G., & Norton, B. (2006). Influence of pumping head, insolation and PV array size on PV water pumping system performance. Solar Energy, 80(1), 51–64. https://doi.org/10.1016/j.solener.2005.07.009
Pande, P. C., Singh, A. K., Ansari, S., Vyas, S. K., & Dave, B. K. (2003). Design development and testing of a solar PV pump based drip system for orchards. Renewable Energy, 28(3), 385–396. https://doi.org/10.1016/S0960-1481(02)00037-X
Raghuwanshi, S. S., & Khare, V. (2018). Sizing and modelling of stand-alone photovoltaic water pumping system for irrigation. Energy and Environment, 29(4), 473–491. https://doi.org/10.1177/0958305X17752739
Rao, R. K., Srinivas, P., & Kranthikumar, S. (2015). Simulation and analysis of electrical water pumping system using solar energy. 2014 International Conference on Smart Electric Grid, ISEG 2014, 2–7. https://doi.org/10.1109/ISEG.2014.7005605
Sahin, A. Z., & Rehman, S. (2012). Economical feasibility of utilizing photovoltaics for water pumping in Saudi Arabia. International Journal of Photoenergy, 2012. https://doi.org/10.1155/2012/542416
Taufik, Oi, A., Anwari, M., & Taufik, M. (2009). Modeling and simulation of photovoltaic water pumping system. Proceedings - 2009 3rd Asia International Conference on Modelling and Simulation, AMS 2009, 497–502. https://doi.org/10.1109/AMS.2009.85
DOI
https://doi.org/10.21107/rekayasa.v14i2.10442Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Nizar Amir
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.