Perbandingan Neural Network Backpropagation dan Extreme Learning Machine pada Robot Manipulator
Abstract
Robotics technology and artificial intelligence devices are growing rapidly in the medical field. The work of medical workers will be made easier by the presence of this technology. It is also applied directly to patients. Patients suffering from various
diseases, of course, need an appropriate solution. A robotic finger manipulator can be applied to a patient with disabilities to assist him in placing or retrieving items. In the manipulator robot, there are sensors, controllers, and actuators. The stimulation of the muscles in the forearm is detected by an electromyograph sensor. The resulting muscle stimulation is classified by the controller into servo motor movement. The motor represents the fingers. The classification method uses a neural network backpropagation and an extreme learning machine which is compared to the performance. Classification using neural network backpropagation has a success rate of 65.3%. While the classification using the extreme learning machine has a success rate of 78.7%.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Falih, Adi, D. I.(2017). Klasifikasi Sinyal Emg Dari Otot Lengan Sebagai Media Kontrol Menggunakan Naïve Bayes. pp 1–86.
Humaini, Q. (2015). Jaringan Syaraf Tiruan Extreme Learning Machine (Elm) Untuk Memprediksi Kondisi Cuaca Di Wilayah Malang.
Pitowarno, E. (2006). ROBOTIKA: Desain, Kontrol, dan Kecerdasan Buatan (1st ed.; D. Hardjono, Ed.). Yogyakarta: CV. Andi Offset.
Rahman, M. (2017). Rancang bangun prostesis lengan untuk tunadaksa pada bawah siku (amputasi transradial).
Sidam, R. L., Suraatmadja, M. S., & Fauzi, H. (2016).Perancangan Alat Ukur Denyut Nadi Menggunakan Sensor Strain Gauge Melalui Media Bluetooth Smartphone. 3(2). 1305–1314.
Sitanaya, J. G., & Arifin, A.(2018). Pengolahan Sinyal EMG sebagai Perintah Kontrol untuk Kursi Roda Elektrik. pp 2–6.
Systems, E. (2019). ESP32-WROOM-32 Datasheet. Retrieved from www.espressif.com.
Tristianti, N. (2017). Klasifikasi Gerakan Otot Lengan Bawah Pada Penderita Stroke Berdasarkan Sinyal EMG Menggunakan Metode K-Nearest Neighbor.
Ubaidillah, M. J. (2018). Klasifikasi Gelombang Otot Lengan Pada Robot Manipulator Menggunakan Support Vector Machine. Jurnal Rekayasa, Vol. 12, No. 1:91-97.
Wildana, I. G. (2018). Rancang Bangun Prototype Robot Tangan Untuk Terapi Penyandang Disabilitas Pasca Stroke Berbasis Emg
Menggunakan Algoritma Extreme Learning Machine.
DOI
https://doi.org/10.21107/rekayasa.v14i3.10230Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Ii Munadhif, Indan Pradhipta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.