THE INFLUENCE OF NaCl SOLUTION FLOW RATE ON ION ABSORPTION OF CAPACITIVE ELECTRIC CARBON PLATE
Abstract
Research on desalination technology in seawater is being developed. This is because sea water has not been used optimally to meet community needs. One of the rapidly developing desalination systems is desalination technology using a capacitive carbon plate. The development of this desalination system technology is carried out using electrode plates made of carbon. These plates are capable of absorbing salt ions through the porous surface. The amount of ion absorbed is determined by the pore surface structure of the plate, the salt flow rate, the number of plates used, the applied voltage and other factors. The salt flow rate between the carbon plates determines the speed of the salt ions to reach the smallest pores on each plate surface. For this reason, this article has conducted research by testing the variation in the flow rate of NaCl solution to the amount of salt ions absorbed on the carbon plate.
Full Text:
PDFReferences
Ahmed, M. A., & Tewari, S. (2018). Capacitive deionization: Processes, materials and state of the technology. Journal of Electroanalytical Chemistry, 813, 178–192. https://doi.org/10.1016/J.JELECHEM.2018.02.024
Demirer, O. N., Clifton, R. L., Perez, C. A. R., Naylor, R., & Hidrovo, C. (2013). Characterization of Ion Transport and -Sorption in a Carbon Based Porous Electrode for Desalination Purposes. Journal of Fluids Engineering, 135(4), 041201. https://doi.org/10.1115/1.4023294
Guo, L., Ding, M., Yan, D., Pam, M. E., Vafakhah, S., Gu, C., Zhang, W., Valdivia y Alvarado, P., Shi, Y., & Yang, H. Y. (2020). High speed capacitive deionization system with flow-through electrodes. Desalination, 496, 114750. https://doi.org/https://doi.org/10.1016/j.desal.2020.114750
Hawks, S. A., Knipe, J. M., Campbell, P. G., Loeb, C. K., Hubert, M. A., Santiago, J. G., & Stadermann, M. (2018). Quantifying the flow efficiency in constant-current capacitive deionization. Water Research, 129, 327–336. https://doi.org/10.1016/J.WATRES.2017.11.025
Mutha, H. K., Cho, H. J., Hashempour, M., Wardle, B. L., Thompson, C. V., & Wang, E. N. (2018). Salt rejection in flow-between capacitive deionization devices. Desalination, 437, 154–163. https://doi.org/10.1016/J.DESAL.2018.03.008
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination, 228(1–3), 10–29. https://doi.org/10.1016/J.DESAL.2007.08.005
Remillard, E. M., Shocron, A. N., Rahill, J., Suss, M. E., & Vecitis, C. D. (2018). A direct comparison of flow-by and flow-through capacitive deionization. Desalination, 444, 169–177. https://doi.org/10.1016/J.DESAL.2018.01.018
Rommerskirchen, A., Gendel, Y., & Wessling, M. (2015). Single module flow-electrode capacitive deionization for continuous water desalination. Electrochemistry Communications, 60, 34–37. https://doi.org/10.1016/J.ELECOM.2015.07.018
Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive Deionization TechnologyTM: An alternative desalination solution. Desalination, 183(1–3), 327–340. https://doi.org/10.1016/J.DESAL.2005.02.054
Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2019). Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 299, 727–735. https://doi.org/10.1016/J.ELECTACTA.2019.01.058
Zhao, R., Satpradit, O., Rijnaarts, H. H. M., Biesheuvel, P. M., & van der Wal, A. (2013). Optimization of salt adsorption rate in membrane capacitive deionization. Water Research, 47(5), 1941–1952. https://doi.org/10.1016/J.WATRES.2013.01.025
DOI: https://doi.org/10.21107/jps.v8i1.8596
Refbacks
- There are currently no refbacks.
Jurnal Pena Sains Indexed by:
Jurnal Pena Sains is licensed under a Creative Commons Attribution 4.0 International License. Copyright © 2014 Science Education Program Study, University of Trunojoyo Madura.