Oxidation Behavior of Zr-based Amorphous Alloys at 400˚- 450˚C in Air

Triwikantoro Triwikantoro, Romdhoni Graha Pribadi, Fatimatul Munawaroh


The study of oxidation behavior of amorphous alloys based on Zirconium with 2 variations in composition was carried out: Zr64.5Cu17Ni11Al7.5 and Zr69.5Cu12Ni11Al7.5 at temperatures of 400 - 450˚C in air. Amorphous Zr-based alloys were thermally characterized using Differential Scanning Calorimeter (DSC) to determine the crystallization temperature and glass transition temperature. The oxidation characterization was carried out using a Thermo gravimetric Analyzer (TGA) at temperatures of 400, 425, and 450˚C for 4 hours in air. The phase analysis of the oxidation product was identified using X-Ray Diffaction (XRD). Based on DSC data the crystallization temperature for Zr64.5Cu17Ni11Al7.5 and Zr69.5Cu12Ni11Al7.5 is 426 and 442˚C respectively. The oxidation kinetics of the two alloys follow parabolic law and the oxidation rate increases with the addition of temperature. Oxides formed during isothermal oxidation in the Zr64.5Cu17Ni11Al7.5 and Zr69.5Cu12Ni11Al7.5 alloys are t-ZrO2 (tetragonal) as the dominant phase and ZrO2 (monoclinic) and CuO as the minor phase. The intermetallic phase is also formed in both samples, t-Zr2Ni and Zr2Cu.

Full Text:



Appel, H. (2000). Physikalishe Aspekte des Golfspiels. Physikalische Blatter, 56 pp. 25 - 31.

Birks, N., & Meier, G. H. (1983). Introduction of to High Temperature Oxidations of Metals. London: Edward Arnold.

Cao, W. H., Zhang, J. L., & Shek, C. H. (2013). The oxidation behavior of Cu42Zr42Al 8Ag8 bulk metallic glasses. Journal of Materials Science, 48(3), 1141–1146. https://doi.org/10.1007/s10853-012-6851-y

Chen, X. (2013). Structure and hardness evolution of the scale of a Zr-based metallic glass during oxidation. Journal of Non-Crystalline Solids, 362(1), 140–146. https://doi.org/10.1016/j.jnoncrysol.2012.11.018

Destyorini, F., Rudyardjo, D. I., & Triwikantoro, T. (2015). Pengaruh Elemen Pemadu Terhadap Ketahanan Korosi Paduan Amorf Berbasis Zirkonium, 18(1), 2015.

Hu, Y., Cao, W., & Shek, C. (2014). The corrosion and oxidation behavior of Zr-based metallic glasses. Journal of Materials Research, 29(11), 1248–1255. https://doi.org/10.1557/jmr.2014.107

Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., & Masumoto, T. (1994). Extremely wide supercooled liquid region and large glass-forming ability in Zr 65-xAl7.5Cu 17.5 Ni10Bex amorphous alloys. Materials Science and

Engineering: A, 179, 210–214.

Kai, W., Chen, Y. R., Ho, T. H., Hsieh, H. H., Qiao, D. C.,

Jiang, F., Liaw, P. K. (2009). Air oxidation of a Zr58Cu22Al12Fe8 bulk metallic glass at 350-550 °C. Journal of Alloys and Compounds, 483(1–2), 519–525. https://doi.org/10.1016/j.jallcom.2008.10.133

Kim, C. W., Jeong, H. G., & Lee, D. B. (2008). Oxidation of Zr65Al10Ni10Cu15 bulk metallic glass. Materials Letters, 62(4–5),584–586. https://doi.org/10.1016/j.matlet.2007.06.010

Kluge, T., & John, C. M. (2015). Technical Note : A simple method for vaterite precipitation for isotopic studies : implications for bulk and clumped isotope analysis, 3289–3299. https://doi.org/10.5194/bg-12-3289-2015

Köster, U., & Jastrow, L. (2007). Oxidation of Zr-based metallic glasses and nanocrystalline alloys. Materials Science and Engineering A, 448–451, 57–62. https://doi.org/10.1016/j.msea.2006.02.316

Lim, K. R., Park, J. M., Park, S. H., Na, M. Y., Kim, K. C., Kim, W. T., & Kim, D. H. (2014). Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass. Applied Physics Letters, 104(3). https://doi.org/10.1063/1.4862025

Mondal, K., Chatterjee, U. K., & Murty, B. S. (2007). Oxidation behavior of multicomponent Zr-based amorphous alloys. Journal of Alloys and Compounds, 433(1–2), 162–170. https://doi.org/10.1016/j.jallcom.2006.06.061

Neogy, S., Mukherjee, A., Ashwini, B., Srivastava, D., Savalia, R. T., Dey, G. K., De, P. K. (2004). Zirconium Based Bulk Metallic Glass/Tungsten Fibre Composite-Fabrication and Characterization". International Symposium of Reseacrh Student on Materials Science and Engineering, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras,

Chennai, 1–12. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract

Nikulina, A. V., Markelov, V. A., & Peregud, M. M. (1996). ”Zirconium Alloy E635 as a Material for Fuel Rod Cladding and Other Components of WWER and RBMK Cores”. Zirconium in Nuclear Industry , Eleventh International Symposium. Zirconium in Nuclear Industry , Eleventh International Symposium.

Shin, H. S., Jeong, Y. J., Choi, H. Y., & Inoue, A. (2007). Influence of crystallization on the deformation behavior of Zr55Al10Ni5Cu30 bulk metallic glass in the supercooled liquid region. Materials Science and Engineering A, 448–451, 243–247. https://doi.org/10.1016/j.msea.2006.02.290

Telford, M. (2004). The case for Bulk Metallic Glass. Materials Today, (March), 36–43.

Triwikantoro, T., & Fajarin, R. (2009). Pengaruh elemen pemadu pada kestabilan struktur paduan amorf berbasis zirkonium, 1–5.

Triwikantoro, T., & Munawaroh, F. (2008). Perilaku Oksidasi Paduan Gelas Metalik Zr-Cu-Ni-Al Pada 440-480o C di Udara. Prosiding Seminar Material Metalurgi 2008, 271–275.

Triwikantoro, Toma, D., Meuris, M., & Köster, U. (1999). Oxidation of Zr-based metallic glasses in air. Journal of Non-Crystalline Solids, 250–252 (I, 719–723. https://doi.org/10.1016/S0022-3093(99)00167-2

Wang, B., Huang, D. Y., Prud’Homme, N., Chen, Z., Jomard, F., Zhang, T., & Ji, V. (2012). Diffusion mechanism of Zr-based metallic glass during oxidation under dry air. Intermetallics, 28, 102–107. https://doi.org/10.1016/j.intermet.2012.04.003

Zander, D., & Köster, U. (2004). Corrosion of amorphous and nanocrystalline Zr-based alloys. Materials Science and Engineering A, 375–377(1–2 SPEC. ISS.), 53–59. https://doi.org/10.1016/j.msea.2003.10.230

Zhang, M., Yao, D., Wang, X., & Deng, L. (2014). Air oxidation of a Zr55Cu30Al10Ni5 bulk metallic glass at its super cooled liquid state. Corrosion Science, 82, 410–419. https://doi.org/10.1016/j.corsci.2014.02.007

Zhang, Q. C., Pang, S. J., Li, Y., & Zhang, T. (2011). Correlation between supercooled liquid region and crystallization behavior with alloy composition of La-Al-Cu metallic glasses. Science China: Physics, Mechanics and Astronomy, 54(9), 1608–1611. https://doi.org/10.1007/s11433-011-4434-6

Zhang, W., Jia, F., Zhang, Q., & Inoue, A. (2007). Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys. Materials Science and Engineering A, 459(1–2), 330–336. https://doi.org/10.1016/j.msea.2007.02.001

DOI: https://doi.org/10.21107/jps.v6i1.5232


  • There are currently no refbacks.

Jurnal Pena Sains Indexed by:

Directory of Open Access Journals                       Home         Find in a library with WorldCat                   Related image





 Creative Commons License

Jurnal Pena Sains is licensed under a Creative Commons Attribution 4.0 International License. Copyright © 2014 Science Education Program Study, University of Trunojoyo Madura.