Oxidation Behavior of Zr-based Amorphous Alloys at 400˚- 450˚C in Air
Abstract
Full Text:
DOWNLOADReferences
Appel, H. (2000). Physikalishe Aspekte des Golfspiels. Physikalische Blatter, 56 pp. 25 - 31.
Birks, N., & Meier, G. H. (1983). Introduction of to High Temperature Oxidations of Metals. London: Edward Arnold.
Cao, W. H., Zhang, J. L., & Shek, C. H. (2013). The oxidation behavior of Cu42Zr42Al 8Ag8 bulk metallic glasses. Journal of Materials Science, 48(3), 1141–1146. https://doi.org/10.1007/s10853-012-6851-y
Chen, X. (2013). Structure and hardness evolution of the scale of a Zr-based metallic glass during oxidation. Journal of Non-Crystalline Solids, 362(1), 140–146. https://doi.org/10.1016/j.jnoncrysol.2012.11.018
Destyorini, F., Rudyardjo, D. I., & Triwikantoro, T. (2015). Pengaruh Elemen Pemadu Terhadap Ketahanan Korosi Paduan Amorf Berbasis Zirkonium, 18(1), 2015.
Hu, Y., Cao, W., & Shek, C. (2014). The corrosion and oxidation behavior of Zr-based metallic glasses. Journal of Materials Research, 29(11), 1248–1255. https://doi.org/10.1557/jmr.2014.107
Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., & Masumoto, T. (1994). Extremely wide supercooled liquid region and large glass-forming ability in Zr 65-xAl7.5Cu 17.5 Ni10Bex amorphous alloys. Materials Science and
Engineering: A, 179, 210–214.
Kai, W., Chen, Y. R., Ho, T. H., Hsieh, H. H., Qiao, D. C.,
Jiang, F., Liaw, P. K. (2009). Air oxidation of a Zr58Cu22Al12Fe8 bulk metallic glass at 350-550 °C. Journal of Alloys and Compounds, 483(1–2), 519–525. https://doi.org/10.1016/j.jallcom.2008.10.133
Kim, C. W., Jeong, H. G., & Lee, D. B. (2008). Oxidation of Zr65Al10Ni10Cu15 bulk metallic glass. Materials Letters, 62(4–5),584–586. https://doi.org/10.1016/j.matlet.2007.06.010
Kluge, T., & John, C. M. (2015). Technical Note : A simple method for vaterite precipitation for isotopic studies : implications for bulk and clumped isotope analysis, 3289–3299. https://doi.org/10.5194/bg-12-3289-2015
Köster, U., & Jastrow, L. (2007). Oxidation of Zr-based metallic glasses and nanocrystalline alloys. Materials Science and Engineering A, 448–451, 57–62. https://doi.org/10.1016/j.msea.2006.02.316
Lim, K. R., Park, J. M., Park, S. H., Na, M. Y., Kim, K. C., Kim, W. T., & Kim, D. H. (2014). Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass. Applied Physics Letters, 104(3). https://doi.org/10.1063/1.4862025
Mondal, K., Chatterjee, U. K., & Murty, B. S. (2007). Oxidation behavior of multicomponent Zr-based amorphous alloys. Journal of Alloys and Compounds, 433(1–2), 162–170. https://doi.org/10.1016/j.jallcom.2006.06.061
Neogy, S., Mukherjee, A., Ashwini, B., Srivastava, D., Savalia, R. T., Dey, G. K., De, P. K. (2004). Zirconium Based Bulk Metallic Glass/Tungsten Fibre Composite-Fabrication and Characterization". International Symposium of Reseacrh Student on Materials Science and Engineering, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras,
Chennai, 1–12. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract
Nikulina, A. V., Markelov, V. A., & Peregud, M. M. (1996). ”Zirconium Alloy E635 as a Material for Fuel Rod Cladding and Other Components of WWER and RBMK Cores”. Zirconium in Nuclear Industry , Eleventh International Symposium. Zirconium in Nuclear Industry , Eleventh International Symposium.
Shin, H. S., Jeong, Y. J., Choi, H. Y., & Inoue, A. (2007). Influence of crystallization on the deformation behavior of Zr55Al10Ni5Cu30 bulk metallic glass in the supercooled liquid region. Materials Science and Engineering A, 448–451, 243–247. https://doi.org/10.1016/j.msea.2006.02.290
Telford, M. (2004). The case for Bulk Metallic Glass. Materials Today, (March), 36–43.
Triwikantoro, T., & Fajarin, R. (2009). Pengaruh elemen pemadu pada kestabilan struktur paduan amorf berbasis zirkonium, 1–5.
Triwikantoro, T., & Munawaroh, F. (2008). Perilaku Oksidasi Paduan Gelas Metalik Zr-Cu-Ni-Al Pada 440-480o C di Udara. Prosiding Seminar Material Metalurgi 2008, 271–275.
Triwikantoro, Toma, D., Meuris, M., & Köster, U. (1999). Oxidation of Zr-based metallic glasses in air. Journal of Non-Crystalline Solids, 250–252 (I, 719–723. https://doi.org/10.1016/S0022-3093(99)00167-2
Wang, B., Huang, D. Y., Prud’Homme, N., Chen, Z., Jomard, F., Zhang, T., & Ji, V. (2012). Diffusion mechanism of Zr-based metallic glass during oxidation under dry air. Intermetallics, 28, 102–107. https://doi.org/10.1016/j.intermet.2012.04.003
Zander, D., & Köster, U. (2004). Corrosion of amorphous and nanocrystalline Zr-based alloys. Materials Science and Engineering A, 375–377(1–2 SPEC. ISS.), 53–59. https://doi.org/10.1016/j.msea.2003.10.230
Zhang, M., Yao, D., Wang, X., & Deng, L. (2014). Air oxidation of a Zr55Cu30Al10Ni5 bulk metallic glass at its super cooled liquid state. Corrosion Science, 82, 410–419. https://doi.org/10.1016/j.corsci.2014.02.007
Zhang, Q. C., Pang, S. J., Li, Y., & Zhang, T. (2011). Correlation between supercooled liquid region and crystallization behavior with alloy composition of La-Al-Cu metallic glasses. Science China: Physics, Mechanics and Astronomy, 54(9), 1608–1611. https://doi.org/10.1007/s11433-011-4434-6
Zhang, W., Jia, F., Zhang, Q., & Inoue, A. (2007). Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys. Materials Science and Engineering A, 459(1–2), 330–336. https://doi.org/10.1016/j.msea.2007.02.001
DOI: https://doi.org/10.21107/jps.v6i1.5232
Refbacks
- There are currently no refbacks.
Jurnal Pena Sains Indexed by:
Jurnal Pena Sains is licensed under a Creative Commons Attribution 4.0 International License. Copyright © 2014 Science Education Program Study, University of Trunojoyo Madura.