VISIBLE WAVELENGTH EFFECT ON TEMPERATURE CHANGE IN GREENHOUSE EFFECT: LABORATORY DESIGN
Abstract
School internships typically adhere to a standard format, employing basic tools for educational purposes. Among these, the greenhouse effect modelling laboratory, traditionally conducted under direct sunlight, faces challenges due to the variability introduced by cloud cover. This variability limits the ability to study the influence of light wavelength on the greenhouse effect, an aspect not accounted for when using sunlight alone. This research aims to explore the impact of light wavelength on temperature changes within greenhouse effect models. In our methodology, we employed an experimental setup that simulated the greenhouse effect using artificial light sources of varying wavelengths: red (641 nm), orange (592 nm), yellow (586 nm), green (536 nm), and blue (474 nm). The experiment involved monitoring the temperature increase within the model greenhouse under each light condition, thereby isolating the effect of wavelength from other environmental variables. The results revealed a direct correlation between light wavelength and the rate of temperature increase in the greenhouse model. Specifically, longer wavelengths were associated with a quicker rise in temperature, highlighting the significant role of wavelength in the greenhouse effect's efficiency. This study underscores the necessity of incorporating wavelength considerations into greenhouse effect models, particularly in educational settings. By integrating such experiments into school curricula, students can gain a deeper, more nuanced understanding of the greenhouse effect, moving beyond the limitations of traditional sunlight-based experiments.
Full Text:
PDFReferences
Besson, U., De Ambrosis, A., & Mascheretti, P. (2010). Studying the physical basis of global warming: Thermal effects of the interaction between radiation and matter and greenhouse effect. European Journal of Physics, 31(2), 375–388. https://doi.org/10.1088/0143-0807/31/2/015
Dong, K., Dong, X., Jiang, Q., & Zhao, J. (2021). Valuing the greenhouse effect of political risks: the global case. Applied Economics, 53(31), 3604–3618. https://doi.org/10.1080/00036846.2021.1883543
Kukkonen, J. E., Kärkkäinen, S., Dillon, P., & Keinonen, T. (2014). The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders’ Representations of the Greenhouse Effect. International Journal of Science Education, 36(3), 406–424. https://doi.org/10.1080/09500693.2013.782452
Kurniatun, H. (2013). Perubahan iklim global: Penyebab dan dampaknya terhadap lingkungan dan kehidupan Kurniatun Hairiah. Tanah, Jurusan Pertanian, Fakultas Brawijaya, Universitas Veteran, Jl, perubahan iklim, 1–41.
Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., & Adormaa, B. (2018). Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research and Reports, 17(6), 1–9. https://doi.org/10.9734/jsrr/2017/39630
Letcher, T. M. (2018). Why do we have global warming? In Managing Global Warming: An Interface of Technology and Human Issues. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814104-5.00001-6
Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897–2913. https://doi.org/10.9770/jesi.2020.7.4(21)
Pratama, R. (2019). Efek Rumah Kaca Terhadap Bumi. Buletin Utama Teknik, 14(2), 1410–4520.
Pujol, T., & Fort, J. (2002). The effect of atmospheric absorption of sunlight on the runaway greenhouse point. Journal of Geophysical Research Atmospheres, 107(21), ACL 5-1-ACL 5-7. https://doi.org/10.1029/2001JD001578
Rima, R., Munandar, A., & Anggraeni, S. (2020). Pengembangan kegiatan praktikum pemodelan efek rumah kaca untuk siswa SMA pada materi perubahan lingkungan. Assimilation: Indonesian Journal of Biology Education, 3(1), 34–38. https://doi.org/10.17509/aijbe.v3i1.23308
Shafira, A. D., Isnomo, Y. H. P., & Imamuddin, A. M. (2021). Pengaruh Perubahan Suhu terhadap Nilai Panjang Gelombang Fiber Optik yang Difungsikan Sebagai Sensor Suhu. Jurnal Jartel: Jurnal Jaringan Telekomunikasi, 11(1), 17–22. https://doi.org/10.33795/jartel.v11i1.104
Sridewi, N. L. P. M., Suyanto, H., & WIjaya Kusuma, I. G. B. (2018). Analisis pengaruh panjang gelombang cahaya terhadap keluaran panel surya tipe polycrystalline. Jurnal METTEK, 4(2), 48. https://doi.org/10.24843/mettek.2018.v04.i02.p03
Xu, Y., & Cui, G. (2021). Influence of spectral characteristics of the Earth’s surface radiation on the greenhouse effect: Principles and mechanisms. Atmospheric Environment, 244(516), 117908. https://doi.org/10.1016/j.atmosenv.2020.117908
Zhong, W., & Haigh, J. D. (2013). The greenhouse effect and carbon dioxide. Weather, 68(4), 100–105. https://doi.org/10.1002/wea.2072
DOI: https://doi.org/10.21107/jps.v11i1.19973
Refbacks
- There are currently no refbacks.
Jurnal Pena Sains Indexed by:
Jurnal Pena Sains is licensed under a Creative Commons Attribution 4.0 International License. Copyright © 2014 Science Education Program Study, University of Trunojoyo Madura.