Text Mining untuk Analisis Kasus Stunting di Nusa Tenggara Barat
Abstract
Keywords
Full Text:
PDFReferences
Aggarwal, C. C., & Aggarwal, C. C. (2015). Mining text data. Springer.
Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. European Research on Management and Business Economics, 24(1), 1–7.
Apriani, L. A., Ismiati, I., Apriani, N., & Malika, R. (2024). Gambaran Pengetahuan dan Sikap Ibu Tentang Stunting pada Balita Usia 24-59 Bulan. Jurnal Kesehatan Qamarul Huda, 12(1), 69–74.
Batool, A., & Byun, Y. C. (2024). Enhanced Sentiment Analysis and Topic Modeling During the Pandemic Using Automated Latent Dirichlet Allocation. IEEE Access, 12, 81206–81220. https://doi.org/10.1109/ACCESS.2024.3411717
Fanni, S. C., Febi, M., Aghakhanya, G., & Emanuele Neri. (2023). Natural language processing. In Introduction to Artificial Intelligence. Cham: Springer International Publishing, 87–99.
Francis, L. A. (2006). Taming text: An introduction to text mining. Casualty Actuarial Society Forum, 51–88.
Greven, A., Kruse, S., Vos, A., Strese, S., & Brettel, M. (2023). Achieving product ambidexterity in new product development: The role of middle managers’ dynamic managerial capabilities. Journal of Management Studies, 60(7), 1786–1818.
Hamdi, S., Elmiana, D. S., Maulana, I., Haromain, N., Rahmawadi, I., Malik, F. A., Mataram, U., Barat, N. T., Tengah, L., Desa, P., & Sosial, M. (2023). STRATEGI PEMERINTAH DESA DALAM PENANGANAN STUNTING BERBASIS MODAL SOSIAL DI DESA BILEBANTE , LOMBOK TENGAH VILLAGE GOVERNMENT STRATEGY IN HANDLING SOCIAL CAPITAL BASED STUNTING IN BILEBANTE VILLAGE , CENTRAL LOMBOK. 18, 209–224. https://doi.org/10.47441/jkp.v18i2.346
Hung, J.-L., & Zhang, K. (2012). Examining mobile learning trends 2003--2008: A categorical meta-trend analysis using text mining techniques. Journal of Computing in Higher education, 24, 1–17.
Irwansyah, I., Ismail, D., & Hakimi, M. (n.d.). Kehamilan remaja dan kejadian stunting anak usia 6 – 23 bulan di Lombok Barat.
Ishmael, O., Kiely, E., Quigley, C., & McGinty, D. (2023). Topic modelling using latent dirichlet allocation (LDA) and analysis of students sentiments. 2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE), 1–6.
Kim, M.-J., Ohk, K., Moon, C.-S., & others. (2017). Trend analysis by using text mining of journal articles regarding consumer policy. New Physics: Sae Mulli, 67(5), 555–561.
Madani Pertiwi, A. N. A., & Hendrati, L. Y. (2023). Literature Review: Analysis of the Causes of Stunting in Toddlers in East Java Province. Amerta Nutrition, 7.
Manuaba, I. B. K., & Karim, M. F. (2024). Latent Dirichlet Allocation (LDA) Topic Modeling and Sentiment Analysis for Myanmar Coup Tweets. 2024 8th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 161–166.
Mustika, W., & Syamsul, D. (2018). Analisis permasalahan status gizi kurang pada balita di puskesmas teupah selatan kabupaten simeuleu. Jurnal Kesehatan Global, 1(3), 127.
Ojo, A. K., & Adeyemo, A. B. (2013). Knowledge discovery in academic electronic resources using text mining. International Journal of Computer Science and Information Security, 11(2), 10–19.
Sudigyo, D., Hidayat, A. A., Nirwantono, R., Rahutomo, R., Trinugroho, J. P., & Pardamean, B. (2023). Literature study of stunting supplementation in Indonesian utilizing text mining approach. Procedia Comput. Sci, 216(2022), 722–729.
Sugiantoro, B., Humam, A. I., Fitriyani, N. L., Alfian, G., Maarif, M. R., & Syafrudin, M. (2023). Utilizing Latent Dirichlet Allocation for Analyzing Topics in Undergraduate Theses. 2023 10th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2023, 121–126. https://doi.org/10.1109/ICITACEE58587.2023.10277046
Wardani, Z., Sukandar, D., Baliwati, Y. F., Riyadi, H., & others. (2021). Sebuah alternatif: indeks stunting sebagai evaluasi kebijakan intervensi balita stunting di Indonesia. Gizi indonesia, 44(1), 21–30.
Yuhefizar, Y., Watrianthos, R., & Komalasari, R. (2024). An LDA Analysis for Topic Modeling of the RESTI Journal. 2024 2nd International Symposium on Information Technology and Digital Innovation (ISITDI), July.
DOI: https://doi.org/10.21107/edutic.v12i1.29522
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fahmi Syuhada, Yuan Sa'adati, Lia Arian Apriani, Syahrani Lonang, Ahmad Fatoni Dwi Putra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Indexed by:
J. Ilm. Edutic is licensed under a Creative Commons Attribution 4.0 International License.