Sistem Klasifikasi Citra Simplisia Fructus Dalam Obat Tradisional Madura Menggunakan Transfer Learning Pada Algoritma CNN

Dian Budi Elnursa, Muhlis Tahir, Abdul Azis Jakfar, Rio Meisya Resnanda

Abstract


Herbal plants have long been a part of traditional medical practices in various cultures, including in Madurese traditional medicine. One crucial component in the preparation of traditional medicine is Simplisia Fructus. Accurate knowledge of Simplisia Fructus is often a challenge, especially for those unfamiliar with it, as recognizing the various forms of Simplisia Fructus can be difficult due to its numerous types. The utilization of artificial intelligence technology, such as Convolutional Neural Network (CNN), can be a solution to assist in identifying and introducing types of Simplisia Fructus. This research employs transfer learning tested on a small-scale dataset. The dataset comprises six classes: Piperis Nigri Fructus (Black Pepper), Piperis Albi Fructus (White Pepper), Cumini Fructus (Cumin), Amomi Fructus (Cardamom), Tamarindus Indica Fructus Piper Retrofractum Fructus (Javanese Chili), Capsici Frutescentis Fructus (Bird's Eye Chili). The total dataset for all classes is 979. Dataset preprocessing involves dividing it into three parts: 80% for training, 10% for validation, and 10% for testing. Model evaluation using a confusion matrix yielded an accuracy rate of 97%. Additionally, web system testing using blackbox testing resulted in a 99.17% rating in the "Highly Acceptable" category. The system implementation follows the software development life cycle (SDLC), specifically the waterfall model for software development and web coding using the Flask framework. The outcome of this research is a web-based application capable of recognizing types of Simplisia Fructus within the category of Madurese traditional medicine

Keywords


Image Classification, Simplisia Fructus, Convolutional Neural Network, Transfer Learning.

Full Text:

PDF

References


Butar-butar, R. J. H., Marpaung, N. L., Studi, P., Informatika, T., Teknik, F., Riau, U., & Pekanbaru, K. (2023). Deep Learning untuk Identifikasi Daun Tanaman Obat Menggunakan Transfer Learning MobileNetV2. 8(2), 142–148.

Hussain, M., Bird, J. J., & Faria, D. R. (2019). A study on CNN transfer learning for image classification. Advances in Intelligent Systems and Computing, 840(October), 191–202. https://doi.org/10.1007/978-3-319-97982-3_16

Irwanta, E., Hikmat, A., Ervizal, D., & Zuhud, A. M. (2015). Keanekaragaman Simplisia Nabati dan Produk Obat Tradisional yang Diperdagangkan di Kabupaten Pati, Jawa Tengah (Diversity of Vegetable Simplisia and Traditional Medicine Products on the Market in Pati Regency, Central Java). Media Konservasi, 20(3), 197–204.

Marpaung, F., Aulia, F., & Nabila, R. C. (2022). Computer Vision Dan Pengolahan Citra Digital.

Nurseptaji, A., & Ramdhani, Y. (2021). Sistem Informasi Perpustakaan dengan Implementasi Model Waterfall. INFORMASI (Jurnal Informatika Dan Sistem Informasi), 13(1), 61–79.

Prasetyo, E., Purbaningtyas, R., Adityo, R. D., Prabowo, E. T., & Ferdiansyah, A. I. (2021). Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata. 8(3), 601–608. http://www.joi.isoss.net/PDFs/Vol-7-no-2-2021/03_J_ISOSS_7_2.pdf

Putra, A. P., Andriyanto, F., Karisman, K., Harti, T. D. M., & Sari, W. P. (2020). Pengujian Aplikasi Point of Sale Menggunakan Blackbox Testing. Jurnal Bina Komputer, 2(1), 74–78. https://doi.org/10.33557/binakomputer.v2i1.757

Raharjo, H. (2022). Suplemen Dan Obat Herbal: Sejarah Serta Gambaran Pemanfaatannya Dalam Tindakan Preventif Dan Kuratif Pada Pandemi Covid-19 Di Indonesia (Telaah Naratif) Oleh. Open Journal Systems, 16(12), 7897.

Tirtana, A., Febriani, M. G. T., Masrui, D. I., & Aisyah, A. A. (2021). Perbandingan Convolution Neural Network Untuk Klasifikasi a Comparison of Convolution Neural Network for Classifying Milkfish. Jurnal Ilmiah Edutic : Pendidikan Dan Informatika, 8(1), 19–30. https://doi.org/10.21107/edutic.v8i1.11650

Widiyastuti, Y. (2020). Orasi Pengukuhan Profesor Riset Bidang Tanaman Obat dan Obat Tradisional. In Lembaga Penerbit Badan Litbangkes Kementerian Kesehatan RI. https://repository.badankebijakan.kemkes.go.id/id/eprint/3933/1/Pengembangan Standar Simplisia_Yuli Widiastuti.pdf




DOI: https://doi.org/10.21107/edutic.v10i1.22957

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dian Budi Elnursa, Muhlis Tahir, Abdul Azis Jakfar, Rio Meisya Resnanda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexed by:
Sinta 3 Google ScholarCrossrefDimensionsWorldcatScilit MDPIROAD


J. Ilm. Edutic is licensed under a Creative Commons Attribution 4.0 International License