Analisis Peramalan Harga Penutupan Saham PT. Telekomunikasi Indonesia dengan Support Vector Machine (SVM)
Abstract
Harga pasar saham menjadi salah satu masalah yang signifikan di pasar finansial karena naik turunnya harga setiap hari. Beberapa faktor seperti lokal dan iklim ekonomi global, kondisi politik, dan aktivitas pasar menjadi dampak yang dapat mempengaruhi harga pasar saham. Menyebabkan pergerakan saham menjadi tidak menentu dan sulit untuk ditebak. Sehingga para investor harus lebih hati-hati dalam membeli saham atau mempertahankan saham yang dimiliki. Oleh karena itu, untuk membantu para investor membuat keputusan yang optimal, dibutuhkan suatu langkah yang tepat seperti memprediksi perilaku harga pasar saham. Penelitian ini memprediksi harga penutupan saham pada PT. Telekomunikasi Indonesia sehingga penelitian ini melakukan prediksi secara univariat. Tujuan pada penelitian ini adalah mengimplementasikan model serta melakukan prediksi harga saham di PT. Telekomunikasi Indonesia. Menggunakan metode SVM yang diuji melalui skenario dalam penginputan window_size dan fungsi kernel. Parameter yang digunakan untuk pemodelan adalah parameter C sebesar 100 untuk semua kernel, parameter degree sebesar 1 untuk kernel polynomial, dan gamma sebesar 0.0001 untuk kernel RBF. Sehingga didapatkan pemodelan fungsi kernel yang paling optimal yaitu kernel polynomial pada ukuran window_size sebesar 3, dengan RMSE sebesar 67.546 dan MAPE sebesar 0.01. Sehingga disimpulkan bahwa performa kernel polynomial memiliki kekuatan akurasi yang tinggi.
Full Text:
PDFReferences
Amin, M. A. A., & Hoque, Md. A. (2019). Comparison of ARIMA and SVM for Short-term Load Forecasting. 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), 1–6. https://doi.org/10.1109/IEMECONX.2019.8877077
BenYahmed, Y., Abu Bakar, A., RazakHamdan, A., Alshareef, A., & Abdullah, S. M. S. (2015). Adaptive sliding window algorithm for weather data segmentation. 80, 322–333.
Budianto, A., Ariyuana, R., & Maryono, D. (2019). PERBANDINGAN K-NEAREST NEIGHBOR (KNN) DAN SUPPORT VECTOR MACHINE (SVM) DALAM PENGENALAN KARAKTER PLAT KENDARAAN BERMOTOR. JIPTEK : Jurnal Ilmiah Pendidikan Teknik dan Kejuruan, 11(1), Article 1. https://doi.org/10.20961/jiptek.v11i1.18018
Dou, J., Yunus, A. P., Bui, D., Sahana, M., Chen, C., Zhu, Z., Wang, W.-D., & Pham, B. (2019). Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 11, 638. https://doi.org/10.3390/rs11060638
Fitriani, R. R., Ernastuti, E., & Swedia, E. R. (2019). ALGORITMA LEARNING VECTOR QUANTIZATION DAN FUZZY K-NN UNTUK PREDIKSI SAHAM BERDASARKAN PESAING. Jurnal Ilmiah Teknologi dan Rekayasa, 24(1), Article 1. https://doi.org/10.35760/tr.2019.v24i1.1929
generator, metatags. (2021). Penerapan Algoritma Support Vector Machine Untuk Model Prediksi Kelulusan Mahasiswa Tepat Waktu | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). http://jurnal.iaii.or.id/index.php/RESTI/article/view/3007
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Hota, H. S., Handa, R., & Shrivas, A. K. (n.d.). Time Series Data Prediction Using Sliding Window Based RBF Neural Network.
Idrees, S. M., Alam, M. A., & Agarwal, P. (2019). A Prediction Approach for Stock Market Volatility Based on Time Series Data. IEEE Access, 7, 17287–17298. https://doi.org/10.1109/ACCESS.2019.2895252
Jange, B. (2021). Prediksi Harga Saham Bank BCA Menggunakan Prophet. Journal of Trends Economics and Accounting Research, 2(1), Article 1.
Karno, A. S. B. (2020). Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory). Journal of Informatic and Information Security, 1(1), Article 1. https://doi.org/10.31599/jiforty.v1i1.133
Kobiela, D., Krefta, D., Król, W., & Weichbroth, P. (2022). ARIMA vs LSTM on NASDAQ stock exchange data. Procedia Computer Science, 207, 3836–3845. https://doi.org/10.1016/j.procs.2022.09.445
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
Liu, X., Yuan, X., Liu, C., Ma, H., & Lian, C. (2021). Analysis of Stock Price Data: Determinition of The Optimal Sliding-Window Length. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.741106
Ma, Q. (2020). Comparison of ARIMA, ANN and LSTM for stock price prediction. E3S Web of Conferences, 218, 01026.
Makala, D., & Li, Z. (2021). Prediction of gold price with ARIMA and SVM. Journal of Physics: Conference Series, 1767(1), 012022. https://doi.org/10.1088/1742-6596/1767/1/012022
Mozaffari, L., Mozaffari, A., & Azad, N. (2014). Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads. Engineering Science and Technology, an International Journal, 6. https://doi.org/10.1016/j.jestch.2014.11.002
Mustakim, M., Buono, A., & Hermadi, I. (2015). Support Vector Regression untuk Prediksi Produktivitas Kelapa Sawit di Provinsi Riau. SITEKIN: Jurnal Sains, Teknologi dan Industri, 12(2), Article 2. https://doi.org/10.24014/sitekin.v12i2.990
Pandey, V., & Bajpai, A. (2019). Predictive Efficiency of ARIMA and ANN Models: A Case Analysis of Nifty Fifty in Indian Stock Market. https://www.semanticscholar.org/paper/Predictive-Efficiency-of-ARIMA-and-ANN-Models%3A-A-of-Pandey-Bajpai/0e8395852a4aaab67a50643b45137630de634adb
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Oliveira, F. L. C., Baets, S. D., Dokumentov, A., … Ziel, F. (2022). Forecasting: Theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001
Rao, P. S., Srinivas, K., & Mohan, A. K. (2020). A Survey on Stock Market Prediction Using Machine Learning Techniques. In A. Kumar, M. Paprzycki, & V. K. Gunjan (Eds.), ICDSMLA 2019 (Vol. 601, pp. 923–931). Springer Singapore. https://doi.org/10.1007/978-981-15-1420-3_101
Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H.-C. (2021). Stock Market Prediction Using Machine Learning Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions. Electronics, 10(21), Article 21. https://doi.org/10.3390/electronics10212717
Schölkopf, B., Tsuda, K., Vert, J.-P., & others. (2004). Kernel methods in computational biology. MIT press.
Shashua, A. (2009). Introduction to Machine Learning: Class Notes 67577. CoRR, abs/0904.3664. http://arxiv.org/abs/0904.3664
Sutrisno, I. P. dan M. F. dan S. (2018). Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10), 3163–3169.
Teixeira Zavadzki de Pauli, S., Kleina, M., & Bonat, W. H. (2020). Comparing Artificial Neural Network Architectures for Brazilian Stock Market Prediction. Annals of Data Science, 7(4), 613–628. https://doi.org/10.1007/s40745-020-00305-w
Vafaeipour, M., Rahbari, O., Rosen, M., Fazelpour, F., & Ansarirad, P. (2014). Application of sliding window technique for prediction of wind velocity time series. International Journal of Energy and Environmental Engineering, 5. https://doi.org/10.1007/s40095-014-0105-5
Wei, Y., Qin, S., Li, X., Zhu, S., & Wei, G. (2019). Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis. Finance Research Letters, 30, 23–29. https://doi.org/10.1016/j.frl.2019.03.028
Wijaya, Y. B., Kom, S., & Napitupulu, T. A. (2010). Stock Price Prediction: Comparison of Arima and Artificial Neural Network Methods - An Indonesia Stock’s Case. 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, 176–179. https://doi.org/10.1109/ACT.2010.45
Yudhawan, D. H., & Purwaningsih, T. (2020). Developing support vector regression model to forcast stock prices of mining companies in Indonesia. Jurnal Informatika, 14(2), 43–48.
DOI: https://doi.org/10.21107/edutic.v11i1.22120
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Dwi Rahmadini, Nur Diana Fahma Salsabila, Anang Kunaefi, Dwi Rolliawati
This work is licensed under a Creative Commons Attribution 4.0 International License.
J. Ilm. Edutic is licensed under a Creative Commons Attribution 4.0 International License.