Cluster Analysis of Low, Medium and High Social Welfare Effect Groupings in Malang City
Abstract
Malang City is one of the cities in Indonesia that is facing the problem of poverty. One of the efforts made by the Malang City government is to provide Family Hope Program (PKH) assistance aimed at improving community welfare. In order for the allocation of assistance to be evenly distributed and directed, it is necessary to group villages based on the social welfare of the community through PKH data. This study aims to group Malang city villages based on PKH using average linkage clustering, obtained three clusters with low, medium and high social welfare. Clusters with high social welfare consist of 54 urban villages and get a lot of PKH assistance. Clusters with low social welfare consist of 2 urban villages and get little PKH assistance. Meanwhile, there is 1 urban village with low social welfare and little PKH assistance.
Keywords: Average Linkage, Poverty, Social Welfare, Malang City
Full Text:
PDFReferences
Adji, A., Hidayat, T., Tuhiman, H., Kurniawati, S., & Maulana, A. (2020). Pengukuran Garis Kemiskinan di Indonesia: Tinjauan Teoritis dan Usulan Perbaikan. 1–36.
Atalay, R., (2015). Science Direct The education and the human capital to get rid of the middle-income trap and to provide the economic development. Procedia - Social and Behavioral Sciences, 174, pp.969–976. Available at: http://dx.doi.org/10.1016/j.sbspro.2015.01.7.20
Barkatin, Lailan, S., dan Hari, W. 2016. Analisis Perilaku Pelajar Terhadap Lingkungan Studi Kasus Pendidikan Menengah di Kabupaten Bogor. Vol. 6 No. 2.
Budiharjo, E. dan Hardjohubojo, S. 1993. Kota Berwawasan Lingkungan. Penerbit Alumni. Bandung.
Cahyono, J. P., Wijanarko, A., & Idialis, A. R. (2024). Innovation Model for Implementation of Public Tourism Policy in Pamekasan Regency Case Study of Talang Siring Beach. EDUTOURISM Journal Of Tourism Research, 6(01), 40-50. https://doi.org/10.53050/ejtr.v6i01.767
Dubes dan Jain, A. K. 1988. Algorithm for Clustering Data. Pearson Education Inc. New Jersey.
Gujarati, D. N. 1995. Basic Econometrics. The McGrow Hill Companies Inc. New York.
Hair, J. F., Black, W. C., Babin, Barry J., dan Anderson, R. E. 2006. Multivariate Data Analysis. Pearson Education Inc. New Jersey.
Halim, N. N. dan Widodo, E. 2017. Clustering Dampak Gempa Bumi di Indonesia
Han, J. dan Kamber, M. 2006 Data Mining Concept and Techniques.
Morgan Kaufman Publishers. San Francisco.
Menggunakan Kohenen Self Organizing Maps Prosiding SI MANIS. Seminar Nasional Integrasi Matematika dan Nilai Islami. 1(1): 188-194.
Irwansyah, E. dan Faisal, M. 2015. Advanced Clustering Teori dan Aplikasi. Deepublish. Yogyakarta.
Safitri, D., Widiharih, T., Wilandari, Y., dan Saputra, H. S. 2012. Analisis Cluster pada Kabupaten/Kota di Jawa Tengah Berdasarkan Produksi Palawija. Media Statistika. 5(1): 11-16. Simamora, B. 2005. Analisis Multivariat Pemasaran. PT. Gramedia
Pustaka Umum. Jakarta.
Supranto, J. 2004. Analisis Multivariat Arti dan Interpretasi. Rineka Cipta. Jakarta.
Walpole, R. E. 1995. Pengantar Statistika. PT Gramedia Pustaka Utama. Jakarta.
Widarjono, A. 2010. Analisis Statistika Multivariat Terapan.UPP STIM YKPN. Yogyakarta.
Yitnosumarto, S. 1990. Dasar-Dasar Statistika. Rajawali. Jakarta.
DOI: https://doi.org/10.21107/bep.v5i1.25409
Refbacks
- There are currently no refbacks.