OPTIMIZATION OF NaOH PRETREATMENT ON AGAROSE QUALITY OF Gelidum sp. SEAWEED FROM THE COSTAL AREA OF YOGYAKARTA, INDONESIA

Muhammad Ridho Afifi, Agnia Purnama, Ruhul Maghfirah, Mutia Farida, Wanda Surianto

Abstract


Seaweed of Gelidium sp. is a type of red seaweed that can produce agarose. In this study, seaweed Gelidium sp. was taken from costal area in Yogyakarta, Indonesia. Agarose can be produced from Gelidium sp. using a method including alkali pretreatment and agarose extraction using PEG 6000 at 85°C. Agarose extraction pretreatment of Gelidium sp. was carried out in an alkaline environment using NaOH with concentrations of 4%, 6%, 8%, and 10%.  The purpose of this research is to obtain the best quality agarose from pretreatment with various NaOH concentrations. The quality of agarose is determined from the results of gel strength, sulfate content, and galactose content. Good quality of agarose has the higher value of gel strength and galactose content, but the lower sulfate content in agarose extracted from Gelidium sp. Based on the results obtained, the highest agarose yield was obtained from pretreatment with a NaOH concentration of 4% of 31.09%. Meanwhile, at 6% NaOH concentration, the highest gel strength was obtained at 151.70 grams/cm2, the lowest sulfate content of 0.4%, and the highest galactose content of 35.76%. Based on statistical analysis using ANOVA with a significance level of 95%, it shows that the variation of NaOH concentration in the extraction pretreatment has a significant effect on gel strength, sulfate content, and galactose content (p <0.05) but is not significant on the agarose yield. In conclusion, the optimization of NaOH pretreatment produced the best agarose quality at a NaOH concentration of 6% because it resulted in the highest gel strength and galactose content and the lowest sulfate content in agarose.


Full Text:

PDF

References


Basyuni, M., Puspita, M., Rahmania, R., Albasri, H., Pratama, I., Purbani, D., Aznawi, A. A., Mubaraq, A., Al Mustaniroh, S. S., Menne, F., Rahmila, Y. I., Salmo, S. G., Susilowati, A., Larekeng, S. H., Ardli, E., & Kajita, T. (2024). Current biodiversity status, distribution, and prospects of seaweed in Indonesia: A systematic review. Heliyon, 10(10), e31073. https://doi.org/10.1016/j.heliyon.2024.e31073

Belattmania, Z., Bhaby, S., Nadri, A., Khaya, K., Bentiss, F., Jama, C., Reani, A., Vasconcelos, V., & Sabour, B. (2021). Gracilaria gracilis (Gracilariales, rhodophyta) from dakhla (southern moroccan atlantic coast) as source of agar: Content, chemical characteristics, and gelling properties. Marine Drugs, 19(12). https://doi.org/10.3390/md19120672

Bertasa, M., Dodero, A., Alloisio, M., Vicini, S., Riedo, C., Sansonetti, A., Scalarone, D., & Castellano, M. (2020). Agar gel strength: A correlation study between chemical composition and rheological properties. European Polymer Journal, 123, 109442. https://doi.org/10.1016/j.eurpolymj.2019.109442

Cebrián-Lloret, V., Martínez-Abad, A., López-Rubio, A., & Martínez-Sanz, M. (2024). Exploring alternative red seaweed species for the production of agar-based hydrogels for food applications. Food Hydrocolloids, 146.https://doi.org/10.1016/j.foodhyd.2023.109177

Fittolani, G., Seeberger, P. H., & Delbianco, M. (2020). Helical polysaccharides. Peptide Science, 112(1). https://doi.org/10.1002/pep2.24124

Gomes-Dias, J. S., Pereira, S. G., Teixeira, J. A., & Rocha, C. M. R. (2022). Hydrothermal treatments – A quick and efficient alternative for agar extraction from Gelidium sesquipedale. Food Hydrocolloids, 132(March). https://doi.org/10.1016/j.foodhyd.2022.107898

Gomez Barrio, L. P., Pradhan, D., Tiwari, U., Curtin, J. F., Jaiswal, A. K., Tiwari, B. K., & Álvarez Garcia, C. (2023). Pressure-based method for the extraction and characterisation of agar from Gelidium sesquipedale. Journal of Applied Phycology, 35(5), 2473–2483. https://doi.org/10.1007/s10811-023-03076-y

Jiang, F., Xu, X. W., Chen, F. Q., Weng, H. F., Chen, J., Ru, Y., Xiao, Q., & Xiao, A. F. (2023). Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Marine Drugs, 21(5). https://doi.org/10.3390/md21050299

Junianto, Ashila, Y., Rahmatunnisa, S., & F, G. Z. (2021). Application of Agar-agar as Food Additives. Asian Journal of Fisheries and Aquatic Research, 12(5), 13–24. https://doi.org/10.9734/ajfar/2021/v12i530244

Latimer Jr., G. W. (Ed.). (2023). Official Methods of Analysis of AOAC International. Oxford University Press. https://doi.org/10.1093/9780197610145.001.0001

Li, R. K., Ying, X. J., Chen, Z. L., Ng, T. B., Zhou, Z. M., & Ye, X. Y. (2020). Expression and Characterization of a GH16 Family β -Agarase Derived from the Marine Bacterium. Catalysts, 10(8), 885. https://doi.org/10.3390/catal10080885

Mohibbullah, M., Talha, M. A., Baten, M. A., Newaz, A. W., & Choi, J. S. (2023). Yield optimization, physicochemical characterizations, and antioxidant properties of food grade agar from Gracilaria tenuistipitata of Cox’s Bazar coast, Bangladesh. Food Science and Nutrition, 11(6), 2852–2863. https://doi.org/10.1002/fsn3.3265

Pandya, Y., Bakshi, M., Sharma, A., Pandya, Y. H., & Pandya, H. (2022). Agar-agar extraction, structural properties and applications: A review. The Pharma Innovation Journal, 6, 1151–1157. https://www.researchgate.net/publication/361254986

Patthamasopsakul, R., Monton, C., Songsak, T., Kunaratnpruk, S., & Sucontphunt, A. (2024). Optimization of Sulfated Polysaccharides Extraction from Gracilaria fisheri Obtained Through Microwave-Assisted Extraction. Journal of Current Science and Technology, 14(2). https://doi.org/10.59796/jcst.V14N2.2024.45

Pereira, S. G., Teixeira-Guedes, C., Souza-Matos, G., Maricato, É., Nunes, C., Coimbra, M. A., Teixeira, J. A., Pereira, R. N., & Rocha, C. M. R. (2021). Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Research, 58.

Sánchez-Flores, J. E., Sandoval-Cabrera, A., Alarcón-Valdés, P., & Santillán-Benítez, J. G. (2025). An affordable and simple method for DNA extraction from agarose suitable for downstream applications. Scientific Reports, 15(1), 1–6. https://doi.org/10.1038/s41598-025-87572-w

Shauli, L., & Salomon, E. (2025). A Simple Method for Measuring Agar Gel Strength. Phycology, 5(1). https://doi.org/10.3390/phycology5010006

Sinurat, E., Fransiska, D., Utomo, B. S. B., Subaryono, S., & Nurhayati, N. (2024). Characteristics of powder agar extracted from different seaweeds species and locations in Indonesia. Journal of Applied Phycology, 36(2), 675–684. https://doi.org/10.1007/s10811-023-03084-y

Subaryono, & Sinurat, E. (2021). Characteristics of Gelidium sp seaweed and its agar from Lampung Waters. IOP Conference Series: Earth and Environmental Science, 860(1), 7–11. https://doi.org/10.1088/1755-1315/860/1/012074

Sutinah, Riniwati, H., Sahidu, A. M., & Suryani. (2020). Strategy for the development of seaweed industry in Indonesia. Systematic Reviews in Pharmacy, 11(2), 44–50. https://doi.org/10.5530/srp.2020.2.08

Tatary, M., & Sarabandi, K. (2025). Optimizing agar extraction from Gracilaria Corticata for industrial production: Comparing physicochemical and rheological properties of two marine sources. Carbohydrate Polymer Technologies and Applications, 10, 100750. https://doi.org/10.1016/j.carpta.2025.100750

Torres, P. B., Nagai, A., Jara, C. E. P., Santos, J. P., Chow, F., & Dos Santos, D. Y. A. C. (2021). Determination of sulfate in algal polysaccharide samples: A step-by-step protocol using microplate reader. Ocean and Coastal Research, 69, 1–4. https://doi.org/10.1590/2675-2824069.21-010pbt

Vuai, S. A. H. (2022). Characterization of agar extracted from Gracilaria species collected along Tanzanian coast. Heliyon, 8(2), e09002. https://doi.org/10.1016/j.heliyon.2022.e09002

Xiao, Q., Wang, X., Zhang, J., Zhang, Y., Chen, J., Chen, F., & Xiao, A. (2021). Pretreatment techniques and green extraction technologies for agar from Gracilaria lemaneiformis. Marine Drugs, 19(11). https://doi.org/10.3390/md19110617

Zhang, C., An, D., Xiao, Q., Weng, H., Zhang, Y., Yang, Q., & Xiao, A. (2020). Preparation, characterization, and modification mechanism of agar treated with hydrogen peroxide at different temperatures. Food Hydrocolloids, 101, 105527. https://doi.org/10.1016/j.foodhyd.2019.105527




DOI: https://doi.org/10.21107/jps.v12i1.29381

Refbacks

  • There are currently no refbacks.


Jurnal Pena Sains Indexed by:

Directory of Open Access Journals                       Home         Find in a library with WorldCat                   Related image

 

 

 

 

 Creative Commons License

Jurnal Pena Sains is licensed under a Creative Commons Attribution 4.0 International License. Copyright © 2014 Science Education Program Study, University of Trunojoyo Madura.