Deteksi dan Klasifikasi Kue Tradisional Indonesia Menggunakan YOLOv8
Abstract
Indonesian traditional cakes are part of the cultural heritage, characterized by their rich flavors, unique forms, and significant historical value. However, the lack of recognition among younger generations necessitates a new approach to preservation efforts. This study aims to develop an image processing-based detection system for traditional cake types using the YOLOv8 algorithm. The five types of cakes identified in this research are lumpur cake, lapis cake, wingko cake, dadar gulung cake, and putu ayu cake. The image dataset was obtained through a combination of direct image capture and public datasets, and was manually annotated using the Roboflow platform. The model was trained using the PyTorch framework and evaluated based on precision, recall, F1-score, and mean Average Precision (mAP) metrics. Experimental results show that the system achieved an average mAP of 89.9% and an F1-score of 86.5%, with a relatively low classification error rate. These findings indicate that the YOLOv8 algorithm is effective in detecting visually similar objects and holds significant potential for application in the digital preservation of culinary heritage. The system can also be further developed as a technology-based educational medium to support the conservation of Indonesia’s local culinary wealth.
Keywords: YOLOv8, Object Detection, Cake Traditional, Image Processing, Computer VisionFull Text:
PDFReferences
S. Arifah, E. R. Swedia, and M. R. D. Septian, "Analisis Perbandingan Algoritma Clustering Dalam Melakukan Segmentasi Warna Pada Citra Jajan Tradisional," Sebatik, vol. 27, no. 1, pp. 70-76, 2023, https://doi.org/10.46984/sebatik.v27i1.2273
D. Sumarlie, C. Lubis, and T. Handhayani, "Pengenalan Kue Tradisional Indonesia Menggunakan Algoritma Convolutional Neural Network," Comput. J. Comput. Sci. Inf. Syst., vol. 6, no. 2, pp. 164-171, 2023, https://doi.org/10.24912/computatio.v6i2.21098
R. Faturrahman, Y. S. Hariyani, and S. Hadiyoso, "Klasifikasi Jajanan Tradisional Indonesia berbasis Deep Learning dan Metode Transfer Learning," ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 4, pp. 945-957, 2023, https://doi.org/10.26760/elkomika.v11i4.945
E. Syahrudin, E. Utami, and A. D. Hartanto, "Enhanced Yolov8 with OpenCV for Blind-Friendly Object Detection and Distance Estimation," J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 8, no. 2, pp. 199-207, 2024, doi: 10.29207/resti.v8i2.5529. https://doi.org/10.29207/resti.v8i2.5529
E. Syahrudin, E. Utami, and A. D. Hartanto, "Object Detection with YOLOv8 and Enhanced Distance Estimation Using OpenCV for Visually Impaired Accessibility," Int. J. Informatics Vis., vol. 9, no. 2, pp. 575-584, 2025, https://doi.org/10.62527/joiv.9.2.2826
M. F. Golfantara, "Penggunaan Algoritma Yolo V8 Untuk Identifikasi Rempah-Rempah," J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, pp. 3867-3873, Oct. 2024, https://doi.org/10.23960/jitet.v12i3S1.5211
I. P. Sary, S. Andromeda, and E. U. Armin, "Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection using Aerial Images," Ultim. Comput. J. Sist. Komput., vol. 15, no. 1, pp. 8-13, 2023, https://doi.org/10.31937/sk.v15i1.3204
R. R. Putra, Maimunah, and D. Sasongko, "Implementasi Algoritma YOLO V8 (You Only Look Once) Dalam Deteksi Penyakit Daun Durian," Build. Informatics, Technol. Sci., vol. 6, no. 3, p. 1517−1526, 2024, doi: 10.28989/avitec.v6i1.2067. https://doi.org/10.28989/avitec.v6i1.2067
A. Rachmatullah Pratama and A. F. Cobantoro, "Klasifikasi Citra Pneumonia Menggunakan Arsitektur Convolutional Neural Network (Cnn) Pneumonia Image Classificati on Using Convolutinal Neural Network (Cnn) Architecture," J. Ilm. NERO, vol. 8, no. 2, p. 2023, 2023, https://doi.org/10.21107/nero.v8i2.18992
A. K. Aziz, L. Novamizanti, and S. A. Wibowo, "Perancangan dan Implementasi Deep Learning untuk Deteksi Kesegaran Ikan Beku pada Aplikasi FishQ menggunakan YOLOv8," J. Nas. SAINS dan Tek., vol. 2, no. 2, pp. 1-6, 2024, https://doi.org/10.25124/jnst.v2i2.8746
W. Songpan, T. Chaianunporn, K. Lomthaisong, and S. Keithmaleesatti, "Automated classification in turtles genus Malayemys using ensemble multiview image based on improved YOLOv8 with CNN," Sci. Rep., vol. 14, no. 1, pp. 1-10, 2024, https://doi.org/10.1038/s41598-024-76431-9
R. Pusparina A and R. Rahmadewi, "Deteksi Objek Berbasis Yolov8 Untuk Mendukung," JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 2, pp. 3188-3195, 2025, https://doi.org/10.36040/jati.v9i2.13257
A. Padia et al., "Object Detection and Classification Framework for Analysis of Video Data Acquired from Indian Roads," Sensors, vol. 24, no. 19, pp. 1-21, 2024, https://doi.org/10.3390/s24196319
P. G, S. Naik, S. M. Kenchol, S. P. Jakalannanavar, and R. M S, "Object Detection Using FasterRCNN , YOLOV7 & YOLOV8," Indiana J. Multidiscip. Res., vol. 4, no. 3, pp. 136-141, 2024, https://doi.org/10.5281/zenodo.12674762
M. R. Sholahuddin et al., "Optimizing YOLOv8 for Real-Time CCTV Surveillance: A Trade-off Between Speed and Accuracy," J. Online Inform., vol. 8, no. 2, pp. 261-270, 2023, https://doi.org/10.15575/join.v8i2.1196
J. Jeri and Z. S. Hidayat, "Penentuan Ukuran Batch Optimal Untuk Pelatihan Yolov8 Dalam Pendeteksian Objek Pada Kendaraan Otonom Determination of Optimal Batch Size For Yolov8," J. Ilm. NERO, vol. 9, no. 1, pp. 35-48, 2024, https://doi.org/10.21107/nero.v9i1.27462
DOI: https://doi.org/10.21107/nero.v10i1.30177
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Arin Ayu Silvyani Mustofa