Implementation Of Convolutional Neural Network Algorithm For Tobacco Pest Detection
Abstract
Agriculture plays a vital role in increasing Gross Domestic Product (GDP), providing employment, contributing to foreign exchange earnings, and supporting environmental conservation. Indonesia has great potential as an agricultural country where population majority relies on agricultural sector for their livelihood. Pamekasan Regency is center of tobacco production development in East Java, with a tobacco plantation area of over 30,000 hectares. However, pest attacks such as caterpillars often damage tobacco plants, reducing productivity and leaf quality. This study implemented AI technology, specifically Convolutional Neural Networks (CNN), to detect caterpillar pests in tobacco plants in Pamekasan. The main focus is on AI development in computer vision using deep learning techniques. The CNN training process involves several stages: convolution, ReLU layers, subsampling/pooling layers, and fully connected layers. The test scenario was conducted by dividing data by 85% training, 10% validation, and 5% testing, as well as tuning parameters for the learning rate and epochs. The model achieved a maximum accuracy of 85% without overfitting at a learning rate of 0.001 and epochs 15. This demonstrates that the CNN deep learning method can effectively identify disease features in tobacco plants. The application of this technology can increase productivity and efficiency in the agricultural sector, supporting a sustainable economy and ecology.
Keywords: convolutional neural network, image detection, tobacco pest.
References
Syaiful, R. Kasanova, and A. Hasaniyah, “ Pengaruh Tata Niaga Tembakau Dan Alternatif Pengganti Tembakau Bagi Petani Di Pamekasan,” Kabilah J. Soc. Community, vol. 4, no. 14, pp. 15–28, 2019, doi: https://doi.org/10.35127/kbl.v4i1.3562
Y. A. Suwitono and F. J. Kaunang, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras,” J. Komtika (Komputasi 2022, https://doi.org/10.31603/komtika.v6i2.8054
S. A. Damayanti, A. Arkadia, “Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat Kematangan dengan Metode CNN,” 2021 https://doi.org/10.31539/intecoms.v7i4.10029
M. B. Tamam, H. Hozairi, M. Walid, and J. F. A. Bernardo, “Classification of Sign Language in Real Time Using Convolutional Neural Network,” Appl. Inf. Syst. Manag., vol. 6, no. 1, pp. 39–46, 2023, https://doi.org/10.15408/aism.v6i1.29820
I. N. Husna, M. Ulum, A. K. Saputro, and D. T. Laksono, “Rancang Bangun Sistem Deteksi Dan Perhitungan Jumlah Orang Menggunakan Metode Convolutional Neural Network (CNN),” SinarFe7, 2022
D. H. Firdaus, B. Imran, L. D. Bakti, and “Klasifikasi Penyakit Katarak Berdasarkan Citra Menggunakan Metode Convolutional Neural Network (Cnn) Berbasis Web,” … Kecerdasan Buatan 2022. https://doi.org/10.69916/jkbti.v1i3.6
A. D. Nurcahyati, R. M. Akbar, and S. Zahara, Klasifikasi citra penyakit pada daun jagung menggunakan deep learning dengan metode Convolution Neural Network (CNN). repository.unim.ac.id, 2021. https://doi.org/10.36815/submit.v2i2.1877
U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 169–173, 2023, https://doi.org/10.30591/jpit.v8i2.5229
I. Maulana, N. Khairunisa, and R. Mufidah, “Deteksi bentuk wajah menggunakan convolutional neural network (CNN),” JATI (Ejournal.itn.ac.id, 2023. https://doi.org/10.36040/jati.v7i6.8171
J. M. T. Wu, Z. Li, N. Herencsar, B. Vo, and J. C. W. Lin, “A graph-based CNN-LSTM stock price prediction algorithm with leading indicators,” Multimedia Systems. Springer, 2023. https://doi.org/10.1007/s00530-021-00758-w
F. El Robrini, B. Amrouche, U. Cali, and T. S. Ustun, "Assessment of machine and deep learning models integrated with variational mode decomposition for photovoltaic power forecasting using real-world data from the semi-arid region of Djelfa, Algeria," Energy Convers. Manag. X, vol. 27, p. 101108, 2025, doi: https://doi.org/10.1016/j.ecmx.2025.101108
I. Aruk, I. Pacal, and A. N. Toprak, "A comprehensive comparison of convolutional neural network and visual transformer models on skin cancer classification," Comput. Biol. Chem., vol. 120, p. 108713, 2026, doi: https://doi.org/10.1016/j.compbiolchem.2025.108713
H. Herdianto and D. Nasution, “Implementasi Metode CNN Untuk Klasifikasi Objek,” METHOMIKA J. Manaj. 2023. https://doi.org/10.46880/jmika.Vol7No1.pp54-60
A. A. Kurniawan and M. Mustikasari, “Implementasi deep learning menggunakan metode CNN dan lSTM untuk menentukan berita palsu dalam bahasa indonesia,” Jurnal Informatika Universitas Pamulang. core.ac.uk, 2021. https://doi.org/10.32493/informatika.v5i4.6760
A. Kurniadi, “Implementasi Convolutional Neural Network Untuk Klasifikasi Varietas Pada Citra Daun Sawi Menggunakan Keras,” DoubleClick J. Comput. Inf. Technol., vol. 4, no. 1, p. 25, 2020, https://doi.org/10.25273/doubleclick.v4i1.5812
U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform., 2023, https://doi.org/10.30591/jpit.v8i2.5229
S. A. Maulana, S. H. Batubara. “Penerapan Metode CNN (Convolutional Neural Network) Dalam Mengklasifikasi Jenis Ubur-Ubur,” J. Penelit, 2023. https://doi.org/10.55606/juprit.v2i4.3084
R. H. Alfikri, M. S. Utomo, H. Februariyanti, and ..., “Pembangunan aplikasi penerjemah bahasa isyarat dengan metode cnn berbasis android,” Jurnal pdfs.semanticscholar.org, 2022, https://doi.org/10.33365/jti.v16i2.1752
DOI: https://doi.org/10.21107/nero.v10i1.30044
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Moh Badri tamam, Nurul Chafid, Hozairi Hozairi, Qurrotul Aini, Teguh Budi Santoso, Wawan Kurniawan, Kuzairi Kuzairi
