ANALISIS KINERJA ALGORITMA PEMBELAJARAN MESIN ENSEMBEL PADA DATASET MULTI KELAS CITRA JAFFE
Abstract
This research aims to develop a facial expression recognition system based on the JAFFE dataset which includes seven classes of emotional expressions, namely happy, sad, angry, afraid, disgusted and neutral expressions. The first step taken is canny segmentation on each dataset to maintain essential information on each face. Next, extraction was carried out using the hu moments method to gain an in-depth understanding of the important characteristics of facial expressions. The next process involves ensemble voting using five classification methods, namely Naive Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Gaussian Process Classifier (GPC), and Decision Tree. The results of these five methods are then ensembel using voting techniques, and the final results are evaluated using performance metrics such as accuracy, precision, recall, and F-1 score. Evaluation is carried out by comparing the final results with the original data from the JAFFE dataset, by measuring accuracy , precision, recall, and F1 Score value to evaluate system performance. The results of this research show that the ensemble voting approach using a combination of classification methods is able to significantly improve facial expression recognition capabilities. The resulting accuracy, precision, recall, and F1 Score values provide a comprehensive picture of system performance. This research contributes to the development of facial emotion recognition technology and can be applied in various contexts. Includes human-computer interaction as well as applications in the fields of artificial intelligence.
Keywords: Performance Analysis, Ensemble, Jaffe Image, Classification, MulticlassFull Text:
PDFReferences
A. Rahmawati, Y. Rianto, and D. Riana, “Deteksi Defect Coffee Pada Citra Tunggal Green Beans Menggunakan Metode Ensamble Decision Tree.,” Techno. com, vol. 20, no. 2, 2021.
N. Rismayanti and A. P. Utami, “Improving Multi-Class Classification on 5-Celebrity-Faces Dataset using Ensemble Classification Methods,” Indones. J. Data …, vol. 4, 2023, doi: 10.56705/ijodas.v4i2.78.
M. I. Aziz, A. Z. Fanani, and A. Affandy, “Analisis Metode Ensemble Pada Klasifikasi Penyakit Jantung Berbasis Decision Tree,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 1–12, 2023.
H. Azis, “Assessing the Performance of Logistic Regression in Heart Disease Detection through 5-Fold Cross-Validation,” Int. J. Artif. Intell. …, 2024, [Online]. Available: https://jurnal.yoctobrain.org/index.php/ijaimi/article/view/137
V. Yevsieiev, S. Maksymova, and A. Abu-Jassar, “The Canny Algorithm Implementation for Obtaining the Object Contour in a Mobile Robot’s Workspace in Real Time,” 2024.
B. S. W. Poetro, E. Maria, H. Zein, and ..., “Advancements in Agricultural Automation: SVM Classifier with Hu Moments for Vegetable Identification,” Indones. J. …, vol. 5, 2024, doi: 10.56705/ijodas.v5i1.123.
L. Hablinawati and A. A. Dzikrullah, “Analisis Sentimen Pengguna Twiter terhadap Perubahan Kebijakan Skripsi sebagai Syarat Wajib Kelulusan menggunakan Metode Naïve Bayes Classifier,” J. MEDIA Inform. BUDIDARMA, vol. 8, no. 3, pp. 1429–1439, 2024.
N. A’ayunnisa, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data …, 2022, [Online]. Available: https://jurnal.yoctobrain.org/index.php/ijodas/article/view/54
H. A. D. Rani, S. Zuhri, and S. Fuji, “Sistem Prediksi Kondisi Kelahiran Bayi Menggunakan Klasifikasi Naïve Bayes,” Joined J. (Journal Informatics Educ., vol. 3, no. 2, pp. 48–56, 2020.
L. Priyambodo et al., “Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan Metode SVM,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 153–160, 2022.
H. Azis, L. Syafie, F. Fattah, and ..., “Unveiling Algorithm Classification Excellence: Exploring Calendula and Coreopsis Flower Datasets with Varied Segmentation Techniques,” 2024 18th Int. …, 2024, doi: 10.1109/IMCOM60618.2024.10418246.
R. Maneno, B. Baso, P. G. Manek, and K. Fallo, “Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur,” J. Inf. Technol., vol. 3, no. 2, pp. 60–66, 2023.
D. Cahyanti, A. Rahmayani, and ..., “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. …, 2020, [Online]. Available: https://www.jurnal.yoctobrain.org/index.php/ijodas/article/view/13
A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. Dan Sist. Informasi), vol. 9, no. 2, pp. 1109–1119, 2022.
I. G. I. Sudipa, R. A. Azdy, I. Arfiani, and ..., “Leveraging K-Nearest Neighbors for Enhanced Fruit Classification and Quality Assessment,” Indones. J. …, 2024, [Online]. Available: https://www.jurnal.yoctobrain.org/index.php/ijodas/article/view/125
P. Putra, A. M. H. Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 6, no. 1, pp. 297–305, 2022.
L. Yang, C. Heiselman, J. G. Quirk, and P. M. Djurić, “Class-imbalanced classifiers using ensembles of Gaussian processes and Gaussian process latent variable models,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 3775–3779.
Y. Chen, Q. Da, W. Liang, P. Xiao, B. Dai, and G. Zhao, “Bagged ensemble of gaussian process classifiers for assessing rockburst damage potential with an imbalanced dataset,” Mathematics, vol. 10, no. 18, p. 3382, 2022.
M. Solahuddin, A. I. Purnamasari, and A. R. Dikananda, “Klasifikasi Kualitas Berita Pada Majalah Menggunakan Metode Decision Tree,” J. Teknol. Ilmu Komput., vol. 1, no. 2, pp. 48–54, 2023.
L. N. Rachmadi, A. P. Wibawa, and U. Pujianto, “Rekomendasi Jurusan dengan Menggunakan Decision Tree pada Sistem Penerimaan Peserta Didik Baru SMK Widya Dharma Turen,” Belantika Pendidik., vol. 4, no. 1, pp. 29–36, 2021.
K. R. Bhatele and S. S. Bhadauria, “Multiclass classification of central nervous system brain tumor types based on proposed hybrid texture feature extraction methods and ensemble learning,” Multimed. Tools Appl., vol. 82, no. 3, pp. 3831–3858, 2023.
B. Bramantyo, M. P. K. Putra, and N. Hendrastuty, “Implementasi Recurrent Neural Network Pada Multiclass Text Classification Judul Berita,” J. Media Borneo, vol. 1, no. 1, pp. 1–11, 2023.
A. Faradibah, D. Widyawati, A. U. T. Syahar, and ..., “Comparison Analysis of Random Forest Classifier, Support Vector Machine, and Artificial Neural Network Performance in Multiclass Brain Tumor Classification,” Indones. J. …, 2023, [Online]. Available: https://www.jurnal.yoctobrain.org/index.php/ijodas/article/view/73
T. I. Z. M. Putra, S. Suprapto, and A. F. Bukhori, “Model Klasifikasi Berbasis Multiclass Classification dengan Kombinasi Indobert Embedding dan Long Short-Term Memory untuk Tweet Berbahasa Indonesia,” J. Ilmu Siber dan Teknol. Digit., vol. 1, no. 1, pp. 1–28, 2022.
M. Harim, H. A. T. Muslimin, and R. A. D. I. SAPUTRA, “Segmentasi Citra Telapak Tangan menggunakan Deteksi Tepi Prewitt, Sobel, Roberts, dan Canny,” JIMP-Jurnal Inform. Merdeka Pasuruan, vol. 8, no. 1, pp. 9–16, 2023.
F. N. Cahya and R. Pebrianto, “Klasifikasi Buah Segar dan Busuk Menggunakan Ekstraksi Fitur Hu-Moment, Haralick dan Histogram,” J. Khatulistiwa Inform., vol. 6, no. 1, p. 490852, 2021.
R. Setiawan, A. M. A. K. Parewe, A. J. Latipah, N. R. D. P. Astuti, A. W. Murdiyanto, and F. P. Putra, “Assessing Bagging-meta Estimator in Imbalanced CT Kidney Disease Classification: A Focus on Sobel and Hu Moment Techniques,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, pp. 64–73, 2023.
F. Aziz and B. L. E. Panggabean, “Klasifikasi Nasabah Potensial menggunakan Algoritma Ensemble Least Square Support Vector Machine dengan AdaBoost,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 269–274, 2023.
F. Dwiramadhan, M. I. Wahyuddin, and D. Hidayatullah, “Sistem Pakar Diagnosa Penyakit Kulit Kucing Menggunakan Metode Naive Bayes Berbasis Web,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 3, pp. 429–437, 2022.
É. Bédard, V. D. B. de Vazelhes, and G. Beaudoin, “Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration,” J. Geochemical Explor., vol. 236, p. 106959, 2022.
M. Prameswari, P. E. Kania, I. G. De Ayu, and S. N. P. Harnoko, “Penerapan Metode Stacking Ensemble Untuk Klasifikasi Status Pinjaman Nasabah Bank,” in PROSIDING SEMINAR NASIONAL SAINS DATA, 2024, pp. 802–811.
G. Antariksa, R. Muammar, and J. Lee, “Performance evaluation of machine learning-based classification with rock-physics analysis of geological lithofacies in Tarakan Basin, Indonesia,” J. Pet. Sci. Eng., vol. 208, p. 109250, 2022.
DOI: https://doi.org/10.21107/nero.v9i2.27872
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Huzain Azis