Kandungan Limbah Pengolahan Rumput Laut dan Potensi Pemanfaatannya (Review)

Wahyu Tri Handoyo, Bakti Berlyanto Sedayu, Sang Kompiang Wirawan, Arif Rahman Hakim

Abstract


ABSTRAK

Pada pengolahan rumput laut menyisakan limbah padat dan cair yang belum ditangani secara optimal. Padahal penanganan tersebut sangat penting untuk menjaga keberlanjutan dan menjauhkan dampak negatif terhadap lingkungan. Salah satu strategi penanganan yang perlu dikembangkan adalah pemanfaatan limbah rumput laut yang dapat mendukung tujuan pembangunan berkelanjutan. Tujuan tulisan ini adalah untuk mengumpulkan informasi dari berbagai sumber penelitian mengenai kandungan limbah rumput laut dan potensi pemanfaatannya sehinga dapat mendukung pengembangan pengelolaan limbah rumput laut yang bernilai tambah. Sebagian besar penelitian yang telah dilakukan mengamati kandungan serat pada limbah rumput laut. Selain itu juga diamati komponen mineral dominan diantaranya mineral N, P, K, Ca, Mg. Hasil studi menunjukkan bahwa limbah tersebut memiliki kandungan serat yang cukup tinggi, namum hasilnya bervariatif. Hal yang sama juga terjadi pada kandungan mineral dominan. Kondisi ini diduga disebabkan oleh berbagai faktor baik internal maupun eksternal. Potensi pemanfaatan yang banyak dikaji adalah sebagai bahan baku bioetanol, biokomposit dan pupuk. Hasil penelitian menunjukkan tren yang positif karena didukung oleh teori yang kuat. Namun untuk saat ini sebagian besar penelitian masih dalam tahap pengembangan awal dan masih terbatas pada penelitian skala laboratorium walaupun ada beberapa penelitian yang sudah sampai pada tahap ujicoba lapang.

Kata kunci: bioetanol, biokomposit, limbah rumput laut, pemanfaatan, pupuk

ABSTRACT

Seaweed processing leaves solid and liquid waste that has not been handled optimally. In fact, such handling is very important to maintain sustainability and avoid negative impacts on the environment. One handling strategy that needs to be developed is the utilization of seaweed waste that can support sustainable development goals. The purpose of this paper is to collect information from various research sources and literature regarding the content of seaweed waste and its potential utilization so that it can support the development of value-added seaweed waste management. Most of the research that has been done looks at the fiber content of seaweed waste. In addition, the dominant mineral components including minerals N, P, K, Ca, Mg were also observed. The results of the study showed that the waste has a fairly high fiber content, but the results varied. The same thing also happened to the dominant mineral content. This condition is thought to be caused by various factors both internal and external. The potential utilization that has been studied is as raw material for bioethanol, biocomposites and fertilizers. Research results show a positive trend because they are supported by strong theory. However, for now most of the research is still in the early development stage and is still limited to laboratory-scale research although there are some studies that have reached the field trial stage.

Keywords: biocomposites, bioethanol, fertilizer, seaweed waste, utilization


References


Adini, S., Kusdiyantini, E., Biologi, M., & Sains, F. (2015). Produksi Bioetanol dari Rumput Laut dan Limbah Agar Gracilaria sp. dengan Metode Sakarifikasi yang Berbeda. BIOMA, 16(2), 67-75.

Ahmed, S., & Husain, Q. (2011). Food and Bioproducts Processing Lactose Hydrolysis from Milk/Whey in Batch and Continuous Processes by Concanavalin A-Celite 545 Immobilized Aspergillus oryzae β galactosidase. Food and Bioproducts Processing, 90(2), 351–359. https://doi.org/10.1016/j.fbp.2011.07.003.

Albano, C., Karam, A., Domínguez, N., Sánchez, Y., González, J., Aguirre, O., & Cataño, L. (2005). Thermal, Mechanical, Morphological, Thermogravimetric, Rheological and Toxicological Behavior of HDPE/Seaweed Residues Composites. Composite Structures, 71(3–4), 282–288. https://doi.org/10.1016/j.compstruct.2005.09.036.

Albarkah, A.M., Ramadhani, M.A., Zahra, S.S., Noviantika, S., Oktaviani, V. D. (2023). Optimalisasi Penggunaan Pupuk Organik KCl untuk Pertumbuhan Tanaman dan Pelestarian Lingkungan. Digitani IPB, 1–5.

Alfonsín, V., Maceiras, R., & Gutiérrez, C. (2019). Bioethanol Production from Industrial Algae Waste. Waste Management, 87, 791–797. https://doi.org/10.1016/j.wasman.2019.03.019.

Ariani, N. M., Cahyono, H. B., Surabaya, B. I., & Perindustrian, K. (2015). Pemanfaatan Limbah Alkali Industri Rumput Laut dan Limbah Pickling Industri Pelapisan Logam sebagai Pupuk Anorganik. Jurnal Riset Industri (Journal of Industrial Research), 9(1), 39–48.

Azzouz, L. (2020). Development and Characterisation of Novel Biocomposites Fabricated Using Natural Fibres and Rapid Prototyping Technology. [Dissertation]. University of Hertfordshire.

Basmal, J., Widanarto, A., Kusumawati, R., & Bandol, S. (2014). Utilization of Alginate Extraction Waste and Fish Silage as Raw Materials for Organic Fertilizer. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 9(2), 109–120.

Burhani, D., Wijayanto, A., Andreansyah, I., & Widyawati, Y. (2023). Utilization of Indonesian Seaweed in Polyethylene-based Composite with Coconut Husk Powder ss Bio-compatibilizer. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2023.03.765.

Cas, P. (2021). Acute Hazards Prevention Fire & Inhalation Skin Eyes Ingestion Symptoms Storage Environment, 1141(November 2016), 1–2.

Diharmi, A., Fardiaz, D., & Andarwulan, N. (2019). Chemical and Minerals Composition of Dried Seaweed Eucheuma spinosum Collected from Indonesia Coastal Sea Regions. International Journal of Oceans and Oceanography, 13(1), 65–71.

Faujiah, F. (2012). Pemanfaatan Karbon Aktif dari Limbah Padat Industri Agar-Agar sebagai Adsorben Logam Berat dan Bahan Organik dari Limbah Industri Tekstil. [Tesis]. Institut Pertanian Bogor.

Hakim, A., Chasanah, E., & Santoso, J. (2017). Bioethanol Production from Seaweed Processing Waste by Simultaneous Saccharification and Fermentation (SSF). Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 12(2), 41–47.

Haslianti. (2013). Pemanfaatan Limbah Karaginan Kappaphycus alvarezii Dotty dalam Proses Pembuatan Bioetanol. [Tesis]. Institut Pertanian Bogor.

Herliany, N.E., Utami, M.A.F., Wilopo, M.D., Permatasari, N., Muda, D.I., Mutiara, S.D., Dewi, W. L. (2022). Potensi Sargassum crassifolium dan Boergessenia forbessi Asal Pantai Teluk Sepang sebagai Pangan Fungsional. Seminar Nasional Hasil Penelitian Kelautan dan Perikanan Tahun, UNIB, 5587, 21–29.

Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Characteristics of Eucheuma cottonii Waste from East Malaysia : Physical, Thermal and Chemical Composition. European Journal of Phycology, 52(2), 200–207. https://doi.org/10.1080/09670262.2016.1248498.

Kathpalia, R., & Bhatla, S. C. (2023). Plant Mineral Nutrition. Springer Nature Singapore Pte Ltd.

Kazemi, H., Mighri, F., & Rodrigue, D. (2022). A Review of Rubber Biocomposites Reinforced with Lignocellulosic Fillers. Journal of Composite Science, 183(6), 1-32. https://doi.org/10.3390/jcs6070183h.

Khaldun, R.I. (2017). Strategi Kebijakan Peningkatan Daya Saing Rumput Laut Indonesia di Pasar Global. Jurnal Sospol, 3(1), 99-125.

Kompas. (2021, 24 Juli). Dukung Ekonomi Biru, Kementerian KP Dorong Riset Olahan Rumput Laut Nirlimbah. Diakses pada 20 Januari 2024, dari https://nasional.kompas.com/read/2021/07/24/13120371/dukung-ekonomi-biru-kementerian-kp-dorong-riset-olahan-rumput-laut-nirlimbah?page=all#google_vignette.

Krishnaiah, D., Sarbatly, R., & Bono, A. (2008). Mineral Content of Some Seaweeds from Sabah`s South China Sea. Asian Journal of Scientific Research, 1(2), 166-170. https://doi.org/10.3923/ajsr.2008.166.170

Kumar, D., & Singh, V. (2019). Bioethanol Production From Corn. Corn (3rd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811971-6.00022-X

Kustantinah, Hidayah, N. U. R., Noviandi, C. U. K. T. R. I., & Astuti, A. (2022). Nutrients Content of Four Tropical Seaweed Species from Kelapa Beach, Tuban, Indonesia and Their Potential as Ruminant Feed. BIODIVERSITAS. 23(12), 6191–6197. https://doi.org/10.13057/biodiv/d231213.

Laftah, W. A., & Majid, R. A. (2019). Development of Bio-composite Film Based on High Density Polyethylene and Oil Palm Mesocarp Fibre. SN Applied Sciences, 1(11), 1–7. https://doi.org/10.1007/s42452-019-1402-7.

Macartain, P., Gill, C. I. R., Brooks, M., Campbell, R., & Rowland, I. R. (2007). Nutritional Value of Edible Seaweeds. Nutrition Reviews, 65(12), 535–543. https://doi.org/10.1301/nr.2007.dec.535.

Madera-Santana, T. J., Freile-Pelegrín, Y., Encinas, J. C., Ríos-Soberanis, C. R., & Quintana-Owen, P. (2015). Biocomposites based on poly(lactic acid) and seaweed wastes from agar extraction: Evaluation of physicochemical properties. Journal of Applied Polymer Science, 132(31), 1–8. https://doi.org/10.1002/app.42320

Maharani, A.A., Husni, A., E. N. (2017). Karakteristik Natrium Alginat Rumput Laut Cokelat Sargassum Fluitans dengan Metode Ekstraksi yang Berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(3), 478-487.

Morais, T., In, A., Coutinho, T., & Ministro, M. (2020). Seaweed Potential in the Animal Feed : A Review. Journal of Marine Science and Engineering Review, 559 (8), 1–24.

Munifah, I., & Irianto, H. E. (2018). Characteristics of Solid Waste Agar Industries. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 13(3), 125–132.

Nakhate, P., & Meer, Y. Van Der. (2021). A Systematic Review on Seaweed Functionality : A Sustainable Bio-Based Material. Sustainability, 6174 (13), 2-26. https://doi.org/10.3390/su13116174htt.

Nurhayati, Kusumawati, R. (2014). Sintesis Selulosa Asetat dari Limbah Pengolahan Agar. JPB Perikanan, 9 (2), 97–107.

Papadopoulos, A. P., Bar-tal, A., & Raviv, M. (2008). Inorganic and Synthetic Organic Components of Soilless Culture and Potting Mixes. Elsevier Ltd. https://doi.org/10.1016/B978-044452975-6.50014-9.

Pasae, R., Maming, Soekendarsi, E. (2020). Making of KCl Liquid Fertilizer from Liquid Waste Manufacture of Seaweed and Galvanized Industry. IOP Conference Series: Earth and Environmental Science, 473. https://doi.org/10.1088/1755-1315/473/1/012076

Perlite Institute, I. (2011). Physical Characteristics Perlite. Diakses pada 13 Agustus 2023, dari https://www.perlite.org/wp-content/uploads/2018/03/physical-characteristics-perlite.pdf.

Rasyid, A., Ardiansyah, A., & Pangestuti, R. (2019). Nutrient Composition of Dried Seaweed Gracilaria gracilis. Indonesian Journal of Marine Sciences, 24(1), 1–6. https://doi.org/10.14710/ik.ijms.24.1.1-6

Razali, N., Sapuan, S. M., & Jawaid, M. (2015). A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity. BioResources, 10(1), 1803-1824. https://doi.org/10.15376/biores.10.1.1803-1824.

Sedayu, B. B., Widianto, T. N., Basmal, J., & Bandol Utomo, B. S. (2008). Pemanfaatan Limbah Padat Pengolahan Rumput Laut Gracilaria sp. untuk Pembuatan Papan Partikel. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 3(1), 1-9. https://doi.org/10.15578/jpbkp.v3i1.5.

Sidongpong, L.E., Oedjoe, M.D.T., Djonu, A. (2022). Kualitas Sifat Fisik Karaginan, Proksimat, dan Organoleptik Kappaphycus alvarezii pada Umur Panen Berbeda di Perairan Pasir Panjang Kota Kupang. Jurnal Aquatik, 5(1), 98–109.

Triwisari, D. A. (2010). Fraksinasi Polisakarida Beberapa Jenis Rumput Laut. [Thesis]. Institut Pertanian Bogor.

Uju, Wijayanto, A. T., Goto, M., & Kamiya, N. (2015). Great potency of seaweed waste biomass from the carrageenan industry for bioethanol production by peracetic acid e ionic liquid pretreatment. Biomass and Bioenergy, 81, 63–69. https://doi.org/10.1016/j.biombioe.2015.05.023.

Vargas, A. R.-, Gallé, A., Blandino, A., & García, L. I. R.-. (2023). Use of Macroalgal Waste from the Carrageenan Industry as Feedstock for the Production of Polyhydroxybutyrate. Biofuels, Bioproducts and Biorefining, 17, 1290–1302. https://doi.org/10.1002/bbb.2508.

Wage, K. (2011). Kajian Pemanfaatan Limbah Padat Industri Pengolahan Rumput Laut Sebagai Media Kultur Mikroalga Chlorella sp. Jurnal Teknologi Lingkungan. BPPT, 12(3), 241–250.

Winarni, I., Uju, Santoso, J. Wibowo, T. (2022). Bioethanol Production from Seaweed Solid Waste Biomass of Agar Processing. IOP Conf. Series: Earth and Environmental Science, 1024. https://doi.org/10.1088/1755-1315/1027/1/012029.

Wiratmaja, I. G., Bagus, I. G., Kusuma, W., & Winaya, I. N. S. (2011). Pembuatan Etanol Generasi Kedua dengan Memanfaatkan Limbah Rumput Laut Eucheuma Cottonii Sebagai Bahan Baku. Jurnal Ilmiah Teknik Mesin, 5(1), 75-84.

Yuliani, N., & Prihantara, A. (2020). Utilization of Residual Carrageenan Extract from Eucheuma Cottonii Seaweed Into Bioethanol. Indonesian Journal of Applied Research, 1(1), 25–31.

Yumas, M., Loppies, J. E., Ristanti, E. Y., & Asriati, W. (2019). Utilization of Semi-Refined Carrageenan Processing Industry Waste from Eucheuma sp. as Liquid Fertilizer in Horticultural Crops. Jurnal Industri Hasil Perkebunan, 12(2), 66–75.

Yun, J., Archer, S. D., & Price, N. N. (2023). Valorization of Waste Materials from Seaweed Industry : An Industry Survey Based Biorefinery Approach. Reviews in Aquaculture, 15, 1020–1027. https://doi.org/10.1111/raq.12748.

Yustin, D., Angelia, D.R., Hala, Y., Taba, P. (2005). Analisis Potensi Limbah Cair Hasil Pengolahan Rumput Laut sebagai Pupuk Buatan. Marina Chimica Acta, 6(1), 2–8.

Zaqyyah, K., Subekti, R., Lamid, M. (2020). Characterization of Activated Carbon from Industrial Solid Waste Agar with a Different Activator Concentrations. Omni-Akuatika, Journal of Fisheries and Marine Research, 16(1), 77–82.

Zero Waste sg. (2014). The Zero Waste Hierarchy. Diakses pada 20 Februari 2024, dari http://www.zerowastesg.com/zero-waste/.




DOI: https://doi.org/10.21107/juvenil.v5i2.25036

Refbacks

  • There are currently no refbacks.


 
 INDEXED BY:

           

       
ISSN: 2723-7583