Performa Pertumbuhan Udang Windu (Penaeus monodon) Sistem Ko-Kultur Hewan Akuatik dan Padi di Air payau
Abstract
ABSTRAK
Sistem ko-kultur yang menggabungkan hewan akuatik dengan tanaman padi selama ini lebih banyak dipraktekkan di air tawar. Eksprimen empat sistem budidaya (monokultur, polikultur, IMTA-non padi, dan IMTA-padi) di air payau dengan tiga ulangan telah diteliti untuk mengevaluasi Laju Pertumbuhan Spesifik (LPS) dan Pertumbuhan Karakteristik Morfometrik (PKM) udang windu. Sebanyak 20 ekor udang windu dikombinasikan dengan ikan nila dan kerang darah masing-masing 20 ekor dan 10 ekor teripang pasir. Sementara itu, 4 rumpun padi salin diapungkan pada bak pemeliharaan dengan menggunakan nampan. Selama 4 minggu, LPS udang windu relatif bervariasi diantara sistem monokultur, polikultur, IMTA-non Padi, dan IMTA-Padi, masing-masing 2,6±0,1% per hari, 3,0±0,3% per hari, 2,9±0,1% per hari, dan 3,3% per hari. Pola yang sama diperoleh untuk PKM (panjang total, panjang kepala, panjang badan, dan panjang karapaks). Analisis ragam menunjukkan bahwa sistem budidaya mempengaruhi secara signifikan LPS dan PKM udang windu (p<0,05). Uji HSD Tukey mengindikasikan bahwa LPS dan PKM tertinggi pada sistem IMTA-Padi secara signifikan (p<0,05) lebih tinggi dibandingkan sistem monokultur, polikultur, dan IMTA-non padi. Namun, pada ketiga sistem budidaya ini tidak mengindikasikan perbedaan yang signifikan (p>0,05). Hasil penelitian skala laboratorium ini memberikan informasi penting potensi pengembangan budidaya udang windu berkelanjutan melalui sistem IMTA-padi di air payau.
Kata Kunci: air payau, ko-kultur, pertumbuhan, udang windu,
ABSTRACT
The co-culture systems that combine aquatic animals with paddy have been practiced more in fresh water. Four experimental culture systems (monoculture, polyculture, IMTA-non paddy, and IMTA-paddy) in brackish water with three replications were conducted to evaluate the Specific Growth Rate (SGR) and Growth Morphometric Characteristics (GMC) of tiger shrimp. A total of 20 tiger prawns were combined with 20 tilapia and blood clams and 10 individuals of sea cucumbers. Meanwhile, four clumps of saline paddy were floated in rearing tanks using trays. During the four weeks, SGR of tiger prawns varied relatively between monoculture, polyculture, IMTA-non paddy, and IMTA-paddy systems, respectively 2.6±0.1% day-1, 3.0±0.3% day-1, 2.9±0.1% day-1, and 3.3% day-1. The same pattern was obtained for GMC (total length, head length, body length, and carapace length). Analysis of variance showed that the aquaculture system significantly affected to SGR and GMC values (p<0.05). Tukey's HSD test indicated that the highest SGR and GMC values were significantly (p<0.05) higher in the IMTA-Paddy system than in the monoculture, polyculture, and IMTA-non paddy systems. However, three cultivation systems did not indicate significant differences (p>0.05). The results of this laboratory scale research provide important information on the potential for developing sustainable tiger prawns cultivation through the IMTA-paddy system in brackish water.
Keywords: brackish water, co-culture, growth, tiger prawns,
Full Text:
PDF (Bahasa Indonesia)References
Amalia, R., Rejeki, S., Widowati, L. L., & Ariyati, R. W. (2022). The growth of tiger shrimp (Penaeus monodon) and its dynamics of water quality in integrated culture. Biodiversitas, 23(1), 593–600. https://doi.org/10.13057/biodiv/d230164
Anh, N. T., Hong Ngan, L. T., Vinh, N. H., & Hai, T. N. (2018). Co-Culture of red seaweed (Gracilaria tenuistipitata) and black tiger shrimp (Penaeus monodon) with different feeding rations. International Journal of Scientific and Research Publications (IJSRP), 8(9). https://doi.org/10.29322 /ijsrp.8.9.2018.p8138
Antonucci, F., Boglione, C., Cerasari, V., Caccia, E., & Costa, C. (2012). External shape analyses in Atherina boyeri (Risso, 1810) from different environments. Italian Journal of Zoology, 79(1), 60–68. https://doi.org/10.1080/11250003.2011.595431
APHA. (2017). Standard Methods for the Examination of Water and Wastewater. In American Public Health Association. American Public Health Association. https://doi.org/10.1016/B978-0-12-382165-2.00237-3
Azizah, I., Rejeki, S., & Ariyati, R. W. (2018). Performa pertumbuhan udang (Penaeus monodon) yang dibudidayakan bersama rumput laut (Gracilaria sp.) dengan padat tebar yang berbeda menerapkan sistem Integrated Multi-Trophic Aquaculture(IMTA). Jurnal Sains Akuakultur Tropis, 2(2), 1–11.
Barani, H. K., Dahmardeh, H., Miri, M., & Rigi, M. (2019). The effects of feeding rates on growth performance, feed conversion efficiency and body composition of juvenile snow. Iranian Journal of Fisheries Sciences, 18(3), 507–516. https://doi.org/10.22092/ijfs.2019.118285
Boyd, C. E., D’Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., McNevin, A. A., Tacon, A. G. J., Teletchea, F., Tomasso, J. R., Tucker, C. S., & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578–633. https://doi.org/10.1111/jwas.12714
Boyd, C. E., & McNevin, A. A. (2015). Aquaculture, Resource Use, and the Environment. John Wiley & Sons, Inc., Hoboken, New Jersey.
Campanati, C., Willer, D., Schubert, J., & Aldridge, D. C. (2022). Sustainable intensification of aquaculture through nutrient recycling and circular economies: More fish, less waste, blue growth. Reviews in Fisheries Science and Aquaculture, 30(2), 143–169. https://doi.org/10.1080/23308249.2021.1897520
Chopin, T., Cooper, J. A., Reid, G., Cross, S., & Moore, C. (2012). Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4(4), 209–220. https://doi.org/10.1111/j.1753-5131.2012.01074.x
Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., & Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3), 81–88. https://doi.org/10.1016/j.aaf.2018.10.002
Effendie, M. I. (2012). Biologi perikanan. Yayasan Pustaka Nusatama, Jakarta.
Emerenciano, M. G. C., Rombenso, A. N., Vieira, F. D. N., Martins, M. A., Coman, G. J., Truong, H. H., Noble, T. H., & Simon, C. J. (2022). Intensification of penaeid shrimp culture: An applied review of advances in production systems, nutrition and breeding. Animals, 12(3). https://doi.org/10.3390/ ani12030236
Feng, J., Li, F., Zhou, X., Xu, C., & Fang, F. (2016). Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond. Ecological Engineering, 94(359), 315–319. https://doi.org/10.1016/j.ecoleng.2016.06.002
Grosso, L., Rakaj, A., Fianchini, A., Morroni, L., Cataudella, S., & Scardi, M. (2021). Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture, 534(December), 736268. https://doi.org/10.1016/j.aquaculture.2020.736268
Hamsiah, Cahyono, I., Heriansah, Kantun, W., & Kabangnga, A. (2021). The Survival rate of biota in Integrated Multi Trophic Aquaculture (IMTA)-Paddy system. Jurnal Sumberdaya Akuatik Indopasifik, 5(2), 127–136.
Heriansah, Kabangnga, A., & Nursida, N. F. (2023). Panduan Pembuatan Dan Penggunaan Wadah Apung Tanaman Untuk Riset Akuakultur Multi-Trofik. Hak Cipta. Nomor Pencatatan 000443037. Kementerian Hukum dna Hak Asasi Manusia Republik Indonesia.
Heriansah, Syamsuddin, R., Najamuddin, & Syafiuddin. (2022). Growth of Kappaphcus alvarezii in vertical method of multi-trophic system based on feeding rate. Egyptian Journal of Aquatic Biology and Fisheries, 26(5), 1197–1210. https://doi.org/10.21608/ejabf.2022.267643
Hosamani, N., Reddy B, S., & Reddy P, R. (2017). Crustacean molting: Regulation and effects of environmental toxicants. Journal of Marine Science: Research & Development, 07(05). https://doi.org/ 10.4172/2155-9910.1000236
Jumiati, Maulana, N., Heriansah, Lapong, I., & Kabangnga, A. (2023). Potensi ko-kultur (Caulerpa lentillifera) dan udang windu (Penaeus monodon) di tambak tradisional air payau. Jurnal Juvenil, 4(1), 21–30. https://doi.org/http://doi.org/10.21107/juvenil.v4i1.18563
Knowler, D., Chopin, T., Martínez-Espiñeira, R., Neori, A., Nobre, A., Noce, A., & Reid, G. (2020). The economics of Integrated Multi-Trophic Aquaculture: where are we now and where do we need to go? Reviews in Aquaculture, 12(3), 1579–1594. https://doi.org/10.1111/raq.12399
Lawson, T. B. (1995). Fundamentals of Aquacultural Engineering. Chapman and Hall Publishers.
Lemos, D., & Weissman, D. (2021). Moulting in the grow-out of farmed shrimp: a review. Reviews in Aquaculture, 13(1), 5–17. https://doi.org/10.1111/raq.12461
Meirinawati, H., Prayitno, H. B., Indriana, L. F., Firdaus, M., & Wahyudi, A. J. (2020). Water quality assessment and monitoring of closed rearing system of the sea cucumber holothuria scabra. ASEAN Journal on Science and Technology for Development, 37(2), 73–80. https://doi.org/10.29037/ AJSTD.624
Mustafa, A. A., Asaad, A. I. J., & Linthin, D. (2021). Performa budidaya udang windu (Penaeus monodon) pada musim kemarau di tambak Kecamatan Marusu Kabupaten Maros. Media Akuakultur, 16(1), 45. https://doi.org/10.15578/ma.16.1.2021.45-56
Namukose, M., Msuya, F. E., Ferse, S. C. A., Slater, M. J., & Kunzmann, A. (2016). Growth performance of the sea cucumber Holothuria scabra and the seaweed Eucheuma denticulatum: Integrated mariculture and effects on sediment organic characteristics. Aquaculture Environment Interactions, 8(Fao 2014), 179–189. https://doi.org/10.3354/aei00172
Nederlof, M. A. J., Verdegem, M. C. J., Smaal, A. C., & Jansen, H. M. (2021). Nutrient retention efficiencies in integrated multi-trophic aquaculture. Reviews in Aquaculture, October, 1–19. https://doi.org/ 10.1111/raq.12645
Neto, R. M., & Ostrensky, A. (2015). Nutrient load estimation in the waste of nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquaculture Research, 46(6), 1309–1322. https://doi.org/10.1111/are.12280
Poernomo. (1996). Masalah Budidaya Udang Penaeid di Indonesia. Simposium Modernisasi Perikanan Rakyat. Jakarta.
Rahi, M. L., Sabbir, W., Salin, K. R., Aziz, D., & Hurwood, D. A. (2022). Physiological, biochemical and genetic responses of black tiger shrimp (Penaeus monodon) to differential exposure to white spot syndrome virus and Vibrio parahaemolyticus. Aquaculture, 546(July 2021), 737337. https://doi.org/ 10.1016/j.aquaculture.2021.737337
Sahu, B. C., Adhikari, S., & Dey, L. (2013). Carbon, nitrogen and phosphorus budget in shrimp (Penaeus monodon) culture ponds in eastern India. Aquaculture International, 21(2), 453–466. https://doi.org/ 10.1007/s10499-012-9573-x
Simão, B. R., Brito, L. O., Campos Maia, A. S., Miranda, L. C., & da Silveira Borges Azevedo, C. M. (2013). Stocking densities and feeding strategies in shrimp and tilapia polyculture in tanks. Pesquisa Agropecuaria Brasileira, 48(8), 1088–1095. https://doi.org/10.1590/S0100-204X2013000800039
Srisunont, C., & Babel, S. (2015). Uptake , release , and absorption of nutrients into the marine environment by the green mussel (Perna viridis). Marine Pollution Bulletin, 97, 285–293. https://doi.org/10.1016/ j.marpolbul.2015.06.004
Srivastava, A., Chun, S. J., Ko, S. R., Kim, J., Ahn, C. Y., & Oh, H. M. (2017). Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake. Journal of Environmental Management, 203, 342–348. https://doi.org/10.1016/j.jenvman.2017.08.006
Sugiyono. (2014). Metode Penelitian Kuantitatif Kualitatif dan R & D. CV Alfa Beta. Jakarta.
Supriatna, A., Nurhatijah, N., Sarong, M. A., & Muchlisin, Z. A. (2019). Effect of biofloc density and crude protein level in the diet on the growth performance, survival rate, and feed conversion ratio of black tiger prawn (Penaeus monodon). IOP Conference Series: Earth and Environmental Science, 348(1). https://doi.org/10.1088/1755-1315/348/1/012131
Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2021). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2), 767–784. https://doi.org/10.1111/brv.12677
Tricahyo. (1995). Biologi dan Kultur Udang Windu (Penaeus monodon). Akademika Pressindo. Jakarta.
Weidner, J., Jensen, C. H., Giske, J., Eliassen, S., & Jørgensen, C. (2020). Hormones as adaptive control systems in juvenile fish. Biology Open, 9(2). https://doi.org/10.1242/bio.046144
Zhang, J., Zhang, S., Kitazawa, D., Zhou, J., Park, S., Gao, S., & Shen, Y. (2019). Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. In Latin American Journal of Aquatic Research (Vol. 47, Issue 2). https://doi.org/10.3856/vol47-issue2-fulltext-1
DOI: https://doi.org/10.21107/juvenil.v4i4.20844
Refbacks
- There are currently no refbacks.
Juvenil byJurusan Kelautan dan Perikananis licensed under a Creative Commons Attribution 4.0 International License.
Published by: Department of Marine and Fisheries, Trunojoyo University of Madura