The Effect of Shipbuilding Material Type on Biofouling Growth at Boom Marina, Banyuwangi, East Java, Indonesia

Wazirotus Sakinah, Ramli Firdaus Kusnadi, Dwi Bagus Prasetiaji, Pandu Prasetya Aji, R. Puranggo Ganjar Widityo, Franciscus Xaverius Kristianta

Abstract


ABSTRACT

The presence of biofouling has an impact on the ship’s performance, which is reduced to require more fuel, in the end, it contributes significantly to cost increases. Biofilms provide a suitable substrate for the growth of microorganisms. Ship hull as a substrate for biofilms has many kinds of material. Steel, wood, laminated bamboo, and fiber are often used for ship hulls. Different material makes different characteristics of substrate for biofilms. The aim of this research is to determine the growth rate of biofouling in each shipbuilding material and to find out which vessel material is suitable for use in the Bali Strait. The experiment was located in Boom Marina, Banyuwangi. The materials used in this research are wood, laminated bamboo, and fiber. The daily growth rate (DGR) is calculated every week of observation. Wood had the most biofouling with a DGR of 2,646 g/day. Laminated bamboo had the least biofouling in this research after 2 months of immersion with a DGR of 0,086 g/day.

Keywords: Biofouling, shipbuilding material, daily growth rate.


Full Text:

PDF

References


Abushaban, A., Salinas-Rodriguez, S. G., Philibert, M., Le Bouille, L., Necibi, M. C., & Chehbouni, A. (2022). Biofouling potential indicators to assess pretreatment and mitigate biofouling in SWRO membranes: A short review. Desalination, 527. https://doi.org/10.1016/j.desal.2021.115543

Andersson, M. H., Berggren, M., Wilhelmsson, D., & Öhman, M. C. (2009). Epibenthic colonization of concrete and steel pilings in a cold-temperate embayment : a W eld experiment. 249–260. https://doi.org/10.1007/s10152-009-0156-9

Bixler, G. D., & Bhushan, B. (2012). Review article: Biofouling: Lessons from nature. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1967), 2381–2417. https://doi.org/10.1098/rsta.2011.0502

Callow, J. A., & Callow, M. E. (2011). Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, 2(1). https://doi.org/10.1038/ncomms1251

Chan, J., & Wong, S. (2010). Biofouling: Types, Impact, and Anti-fouling. Nova Science Publishers.

Chase, A. L. (2015). Effects of substrate material on marine fouling community composition and ascidian larval settlement. 1–86.

Donnelly, B., Sammut, K., & Tang, Y. (2022). Materials Selection for Antifouling Systems in Marine Structures. Molecules, 27(11). https://doi.org/10.3390/molecules27113408

Due, I., & Mepc, R. (2022). Impact of Hull Fouling on Vessel ’ s Fuel Consumption and Emissions based on a Simulation Model. 1–13.

Erfle, P., Riewe, J., Bunjes, H., & Dietzel, A. (2021). Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. Lab on a Chip, 21(11), 2178–2193. https://doi.org/10.1039/d1lc00047k

Hassinger, D. (2022). Mitigation of substrate biofouling to increase post-settlement coral survival. November. https://doi.org/10.13140/RG.2.2.20782.59201

Hendra, M. R. (2016). Studi Pengaruh Variasi Kedalaman Air Laut Tropis Terhadap Penempelan Biofouling Pada Material Bambu Laminasi.

Kukulka, D. J., & Devgun, M. (2007). Fluid temperature and velocity effect on fouling. 27, 2732–2744. https://doi.org/10.1016/j.applthermaleng.2007.03.024

Lin, W., Huang, Y., Li, J., Liu, Z., Yang, W., Li, R., Chen, H., & Zhang, X. (2018). Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane. Cellulose, 25(12), 7341–7353. https://doi.org/10.1007/s10570-018-2074-y

Liu, Z., Mi, B., Wei, P., Jiang, Z., & Fei, B. (2015). Combustion characteristics of moso bamboo ( Phyllostachys pubescens ). European Journal of Wood and Wood Products, Jiang 2002. https://doi.org/10.1007/s00107-015-0997-7

Maddah, H., & Chogle, A. (2017). Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation. Applied Water Science, 7(6), 2637–2651. https://doi.org/10.1007/s13201-016-0493-1

Matin, A., Khan, Z., Zaidi, S. M. J., & Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination, 281(1), 1–16. https://doi.org/10.1016/j.desal.2011.06.063

Meichssner, R., Stegmann, N., Cosin, A. S., Sachs, D., Bressan, M., Marx, H., Krost, P., & Schulz, R. (2020). Control of fouling in the aquaculture of Fucus vesiculosus and Fucus serratus by regular desiccation. Journal of Applied Phycology, 32(6), 4145–4158. https://doi.org/10.1007/s10811-020-02274-2

Melo, L. F., & Bott, T. R. (1997). Biofouling in Water System. Journal of Molecular Biology, 13(2), 451–462. https://doi.org/10.1016/S0022-2836(65)80109-7

Navarrete, S. A., Rojas, F., & Bonicelli, J. (2020). Accumulating Biofouling – and Knowledge. April.

Navarrete, S., & Rojas, F. (2020). Accumulating Biofouling – and Knowledge. April, 70–91.

Panjaitan, M. F. (2011). Analisa Penggunaan Arus Searah (DC) Pada Impressed Current Anti Fouling (Icaf) Sebagai Pencegahan Terjadinya Fouling Pada Cooling System.

Pratama, B., Kusdiyantini, E., Suprihadi, A., Budiharjo, A., & Susanto, A. B. (2014). Senyawa Antifouling Yang Berasosiasi Dengan Alga Coklat (Phaeophyta) Di Perairan Kepulauan Karimunjawa Jepara. Jurnal Biologi, 3(3).

Radiarta, I. N., & Sidik, F. (2021). Sumber Daya Laut dan Pesisir Perairan Selat Bali. Balai Riset dan Observasi Laut Kementerian Kelautan dan Perikanan.

Railkin, A. I. (2003). Marine Biofouling: Colonization Processes and Defenses. CRC Press.

Ryley, M., Carve, M., Piola, R., Scardino, A. J., & Shimeta, J. (2021). Comparison of biofouling on 3D-printing materials in the marine environment. International Biodeterioration and Biodegradation, 164(June), 105293. https://doi.org/10.1016/j.ibiod.2021.105293

Uzun, D., Demirel, Y. K., Coraddu, A., & Turan, O. (2019). Time-dependent biofouling growth model for predicting the effects of biofouling on ship resistance and powering. In Ocean Engineering (Vol. 191). https://doi.org/10.1016/j.oceaneng.2019.106432

Valchev, I., Coraddu, A., Kalikatzarakis, M., Geertsma, R., & Oneto, L. (2022). Numerical methods for monitoring and evaluating the biofouling state and effects on vessels’ hull and propeller performance: A review. Ocean Engineering, 251(March), 110883. https://doi.org/10.1016/j.oceaneng.2022.110883




DOI: https://doi.org/10.21107/jk.v16i1.17964

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.




 INDEXED BY: