Hand Load Analysis Using Text Mining Based on Letter Frequency of Indonesian Language Theses Documents

Akbar Rizki, Barokaturrizkia Ameliani, Abdul Aziz Nurussadad, Bagus Sartono, Itasia Dina Sulvianti, Auzi Asfarian

Abstract

Scientific documents contain valuable knowledge which can be discovered using text analysis. Meanwhile, the act of typing the text may discover the psychological and health condition. The hand load of the typer is essential information for designing a better keyboard, which is relevant to students' well-being in higher education institutions. This study aims to analyze the hand load of students when typing their theses in the Indonesian language. We calculate letter frequency in the Indonesian language theses documents, examine the hand load balance based on letter position on a QWERTY keyboard, identify letter hotspots, and examine hand alternation using circular visualization. The results are that the left hand has the higher load hand, indicated by the most frequent letter appearing in the documents and the letter W as the hotspot, located on the keyboard's left side. Moreover, hand alternations based on the sequence of Indonesian text identify a significant high alteration of letters from the left to the left side when typing Indonesian documents using the QWERTY keyboard. This result confirmed that the left hand has more load and less time to take a break than the right hand.

Keywords

Hand Load Analysis; Letter frequency; Typing; Scientific Documents

Full Text:

PDF

References

S. Spangler et al., “Automated hypothesis generation based on mining scientific literature,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1877–1886, 2014, doi: 10.1145/2623330.2623667.

M. N. Jones and D. J. K. Mewhort, “Case-sensitive letter and bigram frequency counts from large-scale English corpora,” Behav. Res. Methods, Instruments, Comput., vol. 36, no. 3, pp. 388–396, 2004, doi: 10.3758/BF03195586.

W. Li and P. Miramontes, “Fitting ranked english and spanish letter frequency distribution in US and Mexican presidential speeches,” J. Quant. Linguist., vol. 18, no. 4, pp. 337–358, 2011, doi: 10.1080/09296174.2011.608606.

N. Lin, S. Fu, J. Huang, and S. Jiang, “Exploring Letter’s Differences between Partial Indonesian Branch Language and English,” Proc. 2019 Int. Conf. Asian Lang. Process. IALP 2019, pp. 84–89, 2019, doi: 10.1109/IALP48816.2019.9037715.

P. Freihaut and A. S. Göritz, “Does Peoples’ Keyboard Typing Reflect Their Stress Level?: An Exploratory Study,” Zeitschrift fur Psychol. / J. Psychol., vol. 229, no. 4, pp. 245–250, 2021, doi: 10.1027/2151-2604/a000468.

A. Pimenta, D. Carneiro, P. Novais, and J. Neves, “Monitoring mental fatigue through the analysis of keyboard and mouse interaction patterns,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8073 LNAI, pp. 222–231, 2013, doi: 10.1007/978-3-642-40846-5_23.

D. Iakovakis et al., “Early Parkinson’s Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 3535–3538, 2019, doi: 10.1109/EMBC.2019.8857211.

D. Iakovakis, S. Hadjidimitriou, V. Charisis, S. Bostantzopoulou, Z. Katsarou, and L. J. Hadjileontiadis, “Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-25999-0.

K. Nakatsuka et al., “Association between comprehensive workstation and neck and upper-limb pain among office worker,” J. Occup. Health, vol. 63, no. 1, pp. 1–7, 2021, doi: 10.1002/1348-9585.12194.

K. Selvakumar and L. Y. Sheng, “The Prevalence and Risk Factors of Wrist Pain among Young Adults in UTAR during Movement Control Order: A Cross-Sectional Study,” Int. J. Heal. Sci. Res., vol. 11, no. 11, pp. 191–202, 2021, doi: 10.52403/ijhsr.20211125.

W. Rauf, N. Anwar, and A. Ahmed, “Work Related Musculoskeletal Wrist Pain and Functional Disability in Of  ce Workers Using Computer Abstract : Introduction : Objective : Results : Conclusions : Keywords : Results :,” Asian J. Allied Heal. Sci., vol. 02, no. 04, pp. 36–40, 2017.

G. D. Logan and M. J. C. Crump, “The left hand doesn’t know what the right hand is doing: The disruptive effects of attention to the hands in skilled typewriting: Research article,” Psychol. Sci., vol. 20, no. 10, pp. 1296–1300, 2009, doi: 10.1111/j.1467-9280.2009.02442.x.

A. H. H. Onsorodi and O. Korhan, “Application of a genetic algorithm to the keyboard layout problem,” PLoS One, vol. 15, no. 1, pp. 1–11, 2020, doi: 10.1371/journal.pone.0226611.

A. K. Soutter, B. O’Steen, and A. Gilmore, “The student well-being model: A conceptual framework for the development of student well-being indicators,” Int. J. Adolesc. Youth, vol. 19, no. 4, pp. 496–520, 2014, doi: 10.1080/02673843.2012.754362.

R. L. Scheaffer, W. Mendenhall, L. Ott, and K. Gerow, Elementary Survey Sampling, Seventh Ed. Boston M: Brooks/Cole, 2012.

J. Ooms, “pdftools: Text Extraction, Rendering and Converting of PDF Documents.” rOpenSci, 2022, [Online]. Available: https://docs.ropensci.org/pdftools/.

M. S. U. Miah et al., “Sentence Boundary Extraction from Scientific Literature of Electric Double Layer Capacitor Domain: Tools and Techniques,” Appl. Sci., vol. 12, no. 3, pp. 1–19, 2022, doi: 10.3390/app12031352.

A. Ross and V. L. Willson, “Paired Samples T-Test,” in Basic and Advanced Statistical Tests, Rotterdam: SensePublishers, 2017, pp. 17–19.

J. Noyes, “The QWERTY keyboard: a review,” Int. J. Man. Mach. Stud., vol. 18, no. 3, pp. 265–281, 1983, doi: 10.1016/S0020-7373(83)80010-8.

A. Getis and J. Aldstadt, “Constructing the spatial weights matrix using a local statistic,” Adv. Spat. Sci., vol. 61, no. DECEMBER, pp. 147–163, 2010, doi: 10.1007/978-3-642-01976-0_11.

S. Kumar and B. R. Parida, “Hydroponic farming hotspot analysis using the Getis–Ord Gi* statistic and high-resolution satellite data of Majuli Island, India,” Remote Sens. Lett., vol. 12, no. 4, pp. 408–418, 2021, doi: 10.1080/2150704X.2021.1895446.

J. M. Sánchez-Martín, J. I. Rengifo-Gallego, and R. Blas-Morato, “Hot Spot Analysis versus Cluster and Outlier Analysis: An enquiry into the grouping of rural accommodation in Extremadura (Spain),” ISPRS Int. J. Geo-Information, vol. 8, no. 4, 2019, doi: 10.3390/ijgi8040176.

J. K. Ord and A. Getis, “The Analysis of Spatial Association,” Geogr. Anal., vol. 24, no. 3, pp. 189–206, 1992, [Online]. Available: https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.

Z. Gu, L. Gu, R. Eils, M. Schlesner, and B. Brors, “Circlize implements and enhances circular visualization in R,” Bioinformatics, vol. 30, no. 19, pp. 2811–2812, 2014, doi: 10.1093/bioinformatics/btu393.

W. Qi, G. J. Abel, R. Muttarak, and S. Liu, “Circular visualization of China’s internal migration flows 2010–2015,” Environ. Plan. A, vol. 49, no. 11, pp. 2432–2436, 2017, doi: 10.1177/0308518X17718375.

A. Shah, A. Z. Saidin, I. F. Taha, and A. M. Zeki, “Frequencies determination of characters for Bahasa Melayu: Results of preliminary investigations,” Procedia - Soc. Behav. Sci., vol. 27, no. Pacling, pp. 233–240, 2011, doi: 10.1016/j.sbspro.2011.10.603.

DOI

https://doi.org/10.21107/ijseit.v7i02.19078

Metrics

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Akbar Rizki, Barokaturrizkia Ameliani, Abdul Aziz Nurussadad, Bagus Sartono, Itasia Dina Sulvianti, Auzi Asfarian

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.