Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth Engine Cloud Computing Platform
Abstract
Mangroves are trees whose habitat is affected by tides, and their presence has decreased from year to year. Today, mapping technology has undergone many developments, including the availability of images of various resolutions and cloud-based image processing. One of the popular platforms today is the Google Earth Engine. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for extensive processing. The advantage of using Google Earth Engine is that users do not have to be IT experts without experts in application development, WEB programming, and HTML. This study aims to conduct a study on mangrove mapping in Gili Genting District with Sentinel-2A imagery using a Google Earth Engine. This location was chosen since there are still many mangroves, especially on the Gili Raja and Gili Genting Islands. From this research, it can be concluded that cloud computing-based Sentinel-2A image processing shows that the vegetation value of NDVI results ranges from -0.923208 to 0.75579. The classification results show that mangrove forests' overall presence on Gili Genting Island is more expansive than Gili Raja Island with 16.74 ha and 14.75 ha. The use of the Google Earth Engine platform simplifies the analysis process because image processing can be done once with various scripts so that analysis becomes faster.
Keywords
Full Text:
PDFReferences
ESA, E. S. A. (2015). Sentinel-2 User Handbook. In Sentinel-2 User Handbook (p. 64).
Baloloy, A. B., Blanco, A. C., Raymund Rhommel, R. R. C., & Nadaoka, K. (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 95–117. https://doi.org/10.1016/j.isprsjprs.2020.06.001.
Bangqian Chen, Xiangming Xiao, Xiangping Li , Lianghao Pan, Russell Doughty, J. M., Jinwei Dong, Yuanwei Qin, Bin Zhao, Zhixiang Wua, Rui Sun, Guoyu Lan, G. X. a, & Nicholas Clinton, C. G. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011.
Cossu, R., Petitdidier, M., Linford, J., Badoux, V., Fusco, L., Gotab, B., Hluchy, L., Lecca, G., Murgia, F., Plevier, C., Renard, P., Schwichtenberg, H., de Cerff, W. S., Tran, V., & Vetois, G. (2010). A roadmap for a dedicated Earth Science Grid platform. Earth Science Informatics, 3, 135–148. https://doi.org/10.1007/s12145-010-0045-4.
Danoedoro, P. (2012). Pengantar Pengindraan Jauh Digital. In Benedicta Rini W (Ed.), Penerbit ANDI (1st ed.). Penerbit ANDI. ISBN: 9789792931129, 1-397 pp.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Hidayah, Z., Rosyid, D. M., & Armono, H. D. (2015). GIS application in monitoring distribution of mangrove ecosystem of Southern Madura. Ecology, Environment and Conservation, 1–14.
Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation. In Nev York Chichester Brisbane Toronto 6IS s.
Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating combinations of sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa. Remote Sensing, 11(2928), 1–16. https://doi.org/10.3390/rs11242928.
Nemani, R., Votava, P., Michaelis, A., Melton, F., & Milesi, C. (2011). Collaborative supercomputing for global change science. Eos, 92(13), 109–110. https://doi.org/10.1029/2011EO130001.
Oktaviani, N., & Kusuma, H. A. (2017). Pengenalan Citra Satelit Sentinel-2 Untuk Pemetaan Kelautan. OSEANA, XLII(3), 40–55. https://doi.org/10.14203/oseana.2017.vol.42no.3.84.
Pemerintah Kabupaten Buleleng. (2019). Pentingnya hutan mangrove bagi lingkungan hidup. https://www.bulelengkab.go.id/detail/artikel/pentingnya-hutan-mangrove-bagi-lingkungan-hidup-88 (Accessed January 18, 2021).
Ratri Ma’rifatun Nisaa’, N. K. (2017). Pemetaan Kerusakan Mangrove Menggunakan Citra Landsat Oli Di Delta Mahakam, Kalimatan Timur. Prosiding Seminar Nasional Geografi UMS, 67–77. https://doi.org/978–602–361–072-3.
Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., & Martínez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 316–327. https://doi.org/10.1109/TGRS.2007.904834.
United States Geological Survey. (2020). USGS EROS Archive - Sentinel-2. https://doi.org/Sentinel-2 Digital Object Identifier (DOI) number: /10.5066/F76W992G (Accessed January 17, 2021).
Van der Meer, F. D., van der Werff, H. M. A., & van Ruitenbeek, F. J. A. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 128, 124–133. https://doi.org/10.1016/j.rse.2014.03.022.
DOI
https://doi.org/10.21107/ijseit.v6i1.12175Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Luhur Moekti Prayogo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.