Moving Average Investigation in Optimizing Entry and Exit on IDX Sharia Growth

Nurfadillah Nurfadillah, A Ifayani Haanurat, Asri Jaya

Abstract


This study aims to evaluate the effectiveness of the Moving Average indicator in determining entry and exit times on stocks listed on IDXSHAGROW. This is a reference for sharia stock investors in making investment decisions. This study uses a quantitative approach using the Mann-Whitney test to analyze data from May 2023 to May 2024. The population in this study were companies listed on IDXSHAGROW. The purposive sampling method was used in sampling, as many as 7 companies were consistently listed on the index. Data was obtained through the Profits application. The MAs were compared were MA10 and MA50 with the breakout and breakdown methods to determine signals. The results showed that MA10 produced 154 optimal signals out of 202 signals, while MA50 recorded 52 optimal signals out of 68 signals. Both indicators have the same level of accuracy, which is 76%. However, MA10 is more responsive to price changes. The findings emphasize the importance of understanding analysis for investors in making better investment decisions in the sharia capital market.


Keywords


Moving Average, Optimization, Entry and Exit

Full Text:

PDF

References


A. Ifayani Haanurat. (2013). Pengaruh Karakteristik Perusahaan dan Ekonomi Makro terhadap Return Saham Syariah Yang Listing di Jakarta Islamic Index.

Agustini, K., Luckyardi, S., Sari, M., & Artikel, I. (2022). What Is Behavioral Finance??

Aji, F. P., & Astuti, S. (2023). Pengaruh Analisis Teknikal, Aspek Psikologi Dan Money Management Terhadap Keputusan Investasi. Jurnal Ilmiah Manajemen Kesatuan, 11(1). https://doi.org/10.37641/jimkes.v11i1.1678

Ajisaputra, A. (2019). Analisis Entry dan Exit Menggunakan Simple Moving Average dan Stochastic Oscillator pada Emiten Unvr.

Alvior, E. B. (2021). Journal of Business and Management Studies (JBMS) Moving Average Indicator and Trade Set-up as Correlates to Investment Trading in Stock Market: Basis for e Predictability Primer. https://doi.org/10.32996/jbms

Bursa Efek Indonesia. (2022). Indeks Saham Syariah.

Cahyani, N. N. M., & Mahyuni, L. P. (2020). Akurasi Moving Average dalam Prediksi Saham LQ45 di Bursa Efek Indonesia. E-Jurnal Manajemen Universitas Udayana, 9(7), 2769. https://doi.org/10.24843/ejmunud.2020.v09.i07.p15

Chaddha, A., & Yadav, S. (2022). Examining The Predictive Power of Moving Averages in The Stock Market. www.JSR.org

Czubatinski, M., & Schlotmann, R. (2019). Trading: Technical Analysis Masterclass: Master the Financial Markets. Amazon Digital Services LLC - KDP Print US. https://books.google.co.id/books?id=_TJKwgEACAAJ

Fama, E. F. (1965). The Behavior of Stock-Market Prices. In Source: The Journal of Business (Vol. 38, Issue 1).

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. In Source: The Journal of Finance (Vol. 25, Issue 2).

Hanum Pertiwi, A., & Panuntun, B. (2023). Pengaruh Herding Behavior, Cognitive Bias, dan Overconfidence Bias terhadap Keputusan Investasi (Vol. 02, Issue 03). https://journal.uii.ac.id/selma/index

Harits Santoso. (2023). 7410-26441-1-PB. Analisis Fundamental Dan Teknikal Saham PT. Bank Syari’ah Indonesia Tbk. (QRIS).

Julian, R., & Pribadi, M. R. (2021). Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM). Jurnal Teknik Informatika Dan Sistem Informasi, 8(3). http://jurnal.mdp.ac.id

KSEI. (2024). Luncurkan CORES.KSEI, Proses Pembukaan Rekening Investasi dan Pengkinian Data Investor Makin Mudah KSEI Raih Penghargaan. www.ksei.co.id

Mahendra, K., Satyahadewi, N., & Perdana, H. (2022). Analisis Teknikal Saham Menggunakan Indikator Moving Average Convergence Divergence (MACD). In Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) (Vol. 11, Issue 1).

Martia, D. Y., & Yasmine, N. I. (2021). Indikator Simple Moving Average dan Relative Strenght Index untuk Menentukan sinyal Beli dan Jual Saham pada Sektor Infrastruktur. Jurnal Pasar Modal Dan Bisnis, 3(1), 27–38. https://doi.org/10.37194/jpmb.v3i1.67

Mazumder, S., Neogy, S., & Das, S. (2023). Asia-Pacific Journal of Management and Technology Simple Moving Average (SMA) Crossover Strategy with Buy Sell Indicator. Asia-Pacific J.Mgmt. Tech, 3(4), 26–40. https://doi.org/10.46977/apjmt

Mursyidah, H., Abdullah, S., Chasanah, I. U., Huda, M., Ikhsan, F., & Susilo, S. (2023). Pembentukan Portofolio Optimal Pada Indeks Saham Syariah Terbaru Di Pasar Modal Indonesia-Idx Sharia Growth (Idxshagrow). 5(1), 13–30.

OJK. (2023, December 29). OJK. https://ojk.go.id/id/berita-dan-kegiatan/siaran-pers/Pages/Pasar-Modal-Indonesia-Tumbuh-Di-Tengah-Dinamika-Global-Penutupan-Perdagangan-Bursa-Efek-Indonesia-Tahun-2023.aspx

Pangaribuan, J. J. (2020). Perbandingan Metode Moving Average (MA) Dan Neural Network Yang Berbasis Algoritma Backpropagation Dalam Prediksi Harga Saham. https://www.researchgate.net/publication/362015827

Prasetyo, P., Laely, N., & Subagyo, H. (2019). Analisis Komparatif Penggunaan Metode Stochastic, Moving Average Dan MACD Dalam Mendapatkan Keuntungan Optimal Dan Syar’i (Study Pada Jakarta Islamic Index 2016 – 2018). JIMEK : Jurnal Ilmiah Mahasiswa Ekonomi, 2(1), 52. https://doi.org/10.30737/jimek.v2i1.414

Raudys, A., & Pabarškaitė, Ž. (2018). Optimising the smoothness and accuracy of moving average for stock price data. Technological and Economic Development of Economy, 24(3), 984–1003. https://doi.org/10.3846/20294913.2016.1216906

Risaldi, M., Haanurat, A. I., & Jaya, A. (2024). The Prediction of Stock Movements Using William Fractals and Moving Averages: stock. Jurnal Riset Ilmu Ekonomi, 4(1), 14–26. https://doi.org/10.23969/jrie.v4i1.89

Riyanto’, A., & Astuti, S. (2024). Perbandingan Tingkat Akurasi Metode Analisis Teknikal Moving Average Convergence Divergence, Moving Average, Relative Strength Index Saham Infobank15 (Vol. 6, Issue 2).

Santoso, A. A., & Sukamulja, S. (2020). Penggunaan Kombinasi Indikator Sma, Ema, Macd, Rsi, dan Mfi Untuk Menentukan Keputusan Beli dan Jual pada Saham-Saham di Sektor LQ45 Bei Tahun 2018. MODUS, 32(2), 159–174.

Simuru, J. K., Saerang, I. S., & Maramis, J. B. (2021). Pengujian Akurasi Metode Moving Average dalam Memprediksi Harga Saham masa depan pada Bank Bumn yang Terdaftar di Bursa Efek Indonesia. 1664 Jurnal EMBA, 9(3), 1664–1673.

Sisbintari, I. (2017). Sekilas Tentang Behavioral Finance (Vol. 1, Issue 2). http://market.bisnis.com/read/20171222/

Sukandani, Y., Istikhoroh, S., Bambang Dwi Waryanto, R., Ekonomi, F., & PGRI Adi Buana Surabaya, U. (2019). SNHRP-II UNIPA Surabaya Behavioral Finance Pada Proses Pengambilan Keputusan Investasi. http://snhrp.unipasby.ac.id/

Vicky. (2024). Kenal Lebih Dekat dengan Analisa Teknikal Modern. Edukasi Trading, Indikator Trading, Tips & Trick Trading. https://tpfx.co.id/jurnal/kenal-lebih-dekat-dengan-analisa-teknikal-modern/

Yasa, W., Upadana, A., & Trisna Herawati, N. (2020). Pengaruh Literasi Keuangan dan Perilaku Keuangan terhadap Keputusan Investasi Mahasiswa. Jurnal Ilmiah Akuntansi Dan Humanika, 10(2).

Yenni, H., Juliati, S., Samri, Y., & Nasution, J. (2015). Hypothesis Pasar Efisien/Efficient Market Hypothesis (Pasal Modal Menurut Teori Fama dan Pandangan Islam). Nasution Jurnal Perspektif Ekonomi Darussalam, 1(1).




DOI: https://doi.org/10.21107/dinar.v12i1.28732

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nur Fadillah, A Ifayani Haanurat, Asri Jaya

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal Dinar Indexed by:

          

Creative Commons License

Dinar: Jurnal Ekonomi dan Keuangan Islam by Universitas Trunojoyo Madura is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.