Implementation of Robot Operating System on Autonomous Surface Vehicle for Trajectory Localization with You Only Look Once Method

Noorman Rinanto, Anugerah Ekha Gusti Audryadmaja, Zindhu Maulana Ahmad Putra, Agus Khumaid, Ryan Yudha Adhitya, Mat Syaiin, Isa Rachman

Abstract


The development of robotics technology, especially in the field of autonomous vehicles, has made rapid progress in recent years. This study focuses on the development of a trajectory detection and localization system on an Autonomous Surface Vehicle (ASV) using the Robot Operating System (ROS) and the You Only Look Once algorithm version five (YOLOv5). ASV is an autonomous surface vehicle used for various applications, such as underwater mapping and environmental monitoring. In this study, ROS is implemented as a hardware and software integration platform to improve the accuracy of object detection and localization, especially the red and green buoys as trajectory boundaries. Testing was carried out in a real environment to assess the performance of the system, which was previously only based on simulation. The results showed that the integration of ROS and YOLOv5 increased the navigation speed of the ASV, with an increase in the average travel time from 1 minute 16.2 seconds to 1 minute 11.2 seconds, and the success of object detection reached 70% out of 50 trials. This study contributes to the development of ASV technology by increasing the accuracy, efficiency, and reliability of the system in detecting and localizing objects in complex trajectory areas.

Bahasa Indonesia

Perkembangan teknologi robotika, terutama dalam bidang kendaraan otonom, telah mengalami kemajuan pesat dalam beberapa tahun terakhir. Pada penelitian ini berfokus terhadap pengembangan sistem deteksi dan pelokalan lintasan pada Autonomous Surface Vehicle (ASV) menggunakan Robot Operating System (ROS) dan algoritma You Only Look Once versi kelima (YOLOv5). ASV merupakan kendaraan permukaan otonom yang digunakan untuk berbagai aplikasi, seperti pemetaan bawah laut dan pemantauan lingkungan. Dalam penelitian ini, ROS diimplementasikan sebagai platform integrasi perangkat keras dan lunak untuk meningkatkan akurasi deteksi dan lokalisasi objek, khususnya buoy merah dan hijau sebagai pembatas lintasan. Pengujian dilakukan dalam lingkungan nyata untuk menilai performa sistem, yang sebelumnya hanya berbasis simulasi. Hasil penelitian menunjukkan bahwa integrasi ROS dan YOLOv5 meningkatkan kecepatan navigasi ASV, dengan peningkatan rata-rata waktu tempuh dari 1 menit 16,2 detik menjadi 1 menit 11,2 detik, serta keberhasilan deteksi objek mencapai 70% dari 50 percobaan. Penelitian ini berkontribusi pada pengembangan teknologi ASV dengan peningkatan akurasi, efisiensi, dan keandalan sistem dalam mendeteksi dan melokalisasi objek di area lintasan yang kompleks.


Keywords


Autonomous Surface Vehicle (ASV); Robot Operating System (ROS); YOLOv5; Lokalisasi Objek

Full Text:

PDF

References


M. J. Hong and M. R. Arshad, “Modeling and motion control of a riverine autonomous surface vehicle (ASV) with differential thrust,” J. Teknol., vol. 74, no. 9, pp. 137–143, 2015, doi: 10.11113/jt.v74.4817.

T. Beatriz, “Desain Kendali Sistem Gerak Bow Thruster Pada Autonomous Surface Vehicle Dengan Menggunakan Metode Sliding Mode Control,” 2020.

A. Ekha, G. Audryadmaja, J. Endrasmono, Z. Maulana, A. Putra, and L. Subiyanto, “Implementasi ROS dan Optimasi Identifikasi Warna Buoy Dengan Metode YOLOv5 Pada Miniatur Autonomous Surface Vehicle,” Junal Elkolind, vol. 11, no. 1, pp. 299–308, 2024, [Online]. Available: https://doi.org/10.33795/elkolind.v11i1.5343

K. Azman, M. Arhami, and Azhar, “Metode You Only Look Once (YOLO) dalam Deteksi Physical Distancing dan Wajah Bermasker,” Proceeding Semin. Nas. Politek. Negeri Lhokseumawe, vol. 6, no. 1, pp. 107–113, 2022, [Online]. Available: https://e-jurnal.pnl.ac.id/semnaspnl/article/view/3446/0

F. Romadloni, J. Endrasmono, Z. M. A. Putra, A. Khumaidi, I. Rachman, and R. Y. Adhitya, “Identifikasi Warna Buoy Menggunakan Metode You Only Look Once Pada Unmanned Surface Vehicle,” J. Tek. Elektro dan Komput. TRIAC, vol. 10, no. 1, pp. 23–29, 2023, doi: 10.21107/triac.v10i1.19650.

B. Yan, P. Fan, X. Lei, Z. Liu, and F. Yang, “A real-time apple targets detection method for picking robot based on improved YOLOv5,” Remote Sens., vol. 13, no. 9, pp. 1–23, 2021, doi: 10.3390/rs13091619.

K. Kisron, B. S. B. Dewantara, and H. Oktavianto, “Improved Performance of Trash Detection and Human Target Detection Systems using Robot Operating System (ROS),” J. Rekayasa Elektr., vol. 17, no. 2, 2021, doi: 10.17529/jre.v17i2.20805.

G. C. Utami, C. R. Widiawati, and P. Subarkah, “Detection of Indonesian Food to Estimate Nutritional Information Using YOLOv5,” Teknika, vol. 12, no. 2, pp. 158–165, 2023, doi: 10.34148/teknika.v12i2.636.

A. V. EGA and W. ARDIATNA, “Study on Image Processing Method and Data Augmentation for Chest X-Ray Nodule Detection with YOLOv5 Algorithm,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 2, p. 424, 2023, doi: 10.26760/elkomika.v11i2.424.

A. Khumaidi, R. Y. Adhitya, D. Wardani, M. R. Fahmi, S. Utomo, and M. D. Khairansyah, “Design of a Fire Spot Identification System in PT . PAL Indonesia Work Area Using,” 2023.

R. Illmawati, “YOLO v5 untuk Deteksi Nomor Kendaraan di DKI Jakarta YOLO V5 for Vehicle Plate Detection in DKI Jakarta,” J. Komput. Abdi Inform., vol. 10, pp. 32–43, 2023.

H. Zhang and K. Watanabe, “ROS Based Framework for Autonomous Driving of AGVs,” Conf.E-Jikei.Org, 2019, [Online]. Available: http://conf.e-jikei.org/ICMEMIS/2019/proceedings/materials/proc_files/IPS/IPS06_Nakazawa/IPS06_4/Camera_ready_Manuscript_ICMEMIS2019_IPS06_A004.pdf

I. Y. Arulampalam Kunaraj, P.Chelvanathan, Ahmad AA Bakar, “PENGEMBANGAN ROBOT MOBIL MENGGUNAKAN ROS Wea,” J. Eng. Res., vol. 1, no. 1, pp. 1–14, 2023, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK558907/

A. Jalil, “Robot Operating System (Ros) Dan Gazebo Sebagai Media Pembelajaran Robot Interaktif,” Ilk. J. Ilm., vol. 10, no. 3, pp. 284–289, 2018, doi: 10.33096/ilkom.v10i3.365.284-289.




DOI: https://doi.org/10.21107/triac.v11i2.28070

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Teknik Elektro dan Komputer TRIAC

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Indexed by: