

ISSN 2615-5788 Print (2615-7764) Vol 12 No. 2 @ 2025 M.Faridzqi S, M.Sahal Anwar H, M.Saef Mubhaul Abbas

JURNAL TEKNIK ELEKTRO DAN KOMPUTER TRIAC 2025 Shela Rahma Fitri, Novianti Ramadhani

https://journal.trunojoyo.ac.id/triac Page 61-67

Designing an Automatic Parking System Using
Arduino Uno and a Python-Based GUI Interface

Muhamad Faridzqi Suryadi¹, Muhammad Sahal Anwar Hadi
2
,

Muhammad Saef Mubhaul Abbas
3
, Shela Rahma Fitri

4
, Novianti Ramadhani5

Bachelor of Informatics Engineering Program, Nahdlatul Ulama Indonesia University

Faculty of Engineering and Computer Science, Nahdlatul Ulama Indonesia University

 E-mail: geryandgrey@gmail.com1, sahalanwarhadi25@gmail.com2, nahmubhan31@gmail.com3, shela04rahma@gmail.com4
nvntiramadhani180@gmail.com5

Abstract— Conventional parking systems often cause

problems such as long queues, delays in recording, and lack of

efficiency in vehicle data management. Therefore, this study

designed an automatic parking system using Arduino Uno

combined with HC-SR04 ultrasonic sensors, servo motors,

input buttons (push buttons), and a Python Graphical User

Interface (GUI). When a vehicle is detected by the sensor, a

16x2 Liquid Crystal Display (LCD) will display a welcome

message and instructions to the user to press the button to

print a parking ticket. This system records the vehicle's entry

time and generates a ticket with a unique Identification (ID)

code and arrival time. All vehicle data is stored in a Comma-

Separated Values (CSV) file to facilitate monitoring and

calculation of parking fees when the vehicle exits. This system

can calculate the total parking cost based on the duration of

parking at the predetermined rate and display parking user

data on the GUI. Based on testing, the system can detect

vehicles at an effective distance of 5–15 cm using ultrasonic

sensors, open and close the barrier using a servo motor in

approximately 1–2 seconds, and print tickets via a thermal

printer in less than 3 seconds. These results indicate that the

developed system can operate automatically and efficiently, so

that it has the potential to be a solution to reduce problems in

manual parking management.

Keywords— Automatic parking system, Arduino Uno,
ultrasonic sensor, Python GUI, parking ticket, 16x2 LCD, servo
motor.

I. INTRODUCTION

As the number of motor vehicles increases, the need for
an efficient and organized parking system becomes
increasingly important, especially in urban areas.
Conventional parking systems that are still operated
manually often cause various problems, such as long
queues, errors in recording parking times, and potential
ticket abuse. Therefore, the development of an automated
parking system is one relevant solution to address these
challenges.

One approach in developing this system is to utilize
microcontrollers such as Arduino Uno connected to various
sensors and actuators, such as ultrasonic sensors to detect
the presence of vehicles and servo motors to automatically
adjust parking barriers. In addition, the use of a Python-
based Graphical User Interface (GUI) allows the system to
digitally record vehicle data and calculate parking fees

based on the duration of the vehicle's stay in the parking
area.

Previous research shows that the HC SR04 ultrasonic
sensor controlled by Arduino Uno is capable of detecting
vehicles with an accuracy of nearly 99%, after undergoing a
characterization process using fuzzification and
defuzzification methods [1]. Meanwhile, research by
Priyulida et al. developed an Arduino Uno-based automatic
parking barrier system, which utilizes HC SR04 ultrasonic
sensors and servo motors to automatically open and close
the barrier when a vehicle is detected [2].

Based on these findings, this study aims to design and
build an automatic parking system using Arduino Uno, HC
SR04 ultrasonic sensors, push buttons, servo motors, 16x2
Liquid Crystal Display (LCD), and a Python GUI connected
to a thermal printer to automatically print tickets. This
system focuses only on the process of vehicles entering and
exiting with digital tickets, not on monitoring parking slots,
and is expected to be an efficient and practical solution for
parking areas in public places such as shops, offices,
restaurants, and tourist areas.

II. MATERIALS AND METHODS

This research uses an (engineering design) method with
an experimental approach to develop an automatic parking
system that can detect vehicles, print entry tickets, and
automatically control parking barriers. The prototype was
developed with an Arduino Uno microcontroller as the
hardware control center and a Python-based desktop
interface for ticket data management and parking ticket
printing.

A. Tools and Materials

This study uses several main components and supporting
tools in designing an Arduino Uno-based automatic parking
system, including:

1) Arduino

 Figure 1. Arduino Uno

mailto:geryandgrey@gmail.com
mailto:sahalanwarhadi25@gmail.com2
mailto:nahmubhan31@gmail.com3
mailto:shela04rahma@gmail.com4

 The Arduino Uno is an ATmega328P-based
microcontroller that serves as the control center for all
system components. The Arduino Uno has 14 digital
input/output pins and 6 analog input pins, and supports serial
communication used to communicate with computers via the
Universal Serial Bus (USB) port [3]. Arduino Uno is used as
the central microcontroller of the parking system, tasked with
reading sensors, controlling servos, and communicating with
Computer.

2) Ultrasonic Sensor HC-SR04 (2 pcs)

 Figure 2. Ultrasonic Sensor HC-SR04

This sensor works by emitting ultrasonic waves and
measuring the reflection time to calculate distance, with high
accuracy in the range of 2 cm to 4 m. The sensor has four
pins: VCC (Voltage Common Collector), Trigger (trigger for
sending ultrasonic signals), Echo (receiver for signal
reflections), and GND (Ground), and is commonly used in
automatic parking applications [4]. This sensor is used to
detect vehicles entering and exiting the lane.

3) Servo Motor SG90 (2 pcs)

Figure 3. Servo Motor SG90

SG90 servo motor is used as a barrier actuator in
automatic parking systems, with a maximum rotation angle
of 180°, low power consumption, and a torque of
approximately 1,8 kg·cm. These characteristics make the
SG90 suitable for small-scale mechanical applications. A
study by Khamidah et al. shows the application of the SG90
in an Arduino Uno-based kWh token activator system with
good motion stability [5].

4) LCD 16 x 2 I2C

 Figure 4. LCD 16 x 2 I2C

The 16×2 I2C LCD is used to display messages to users,
such as “Welcome” and “Please Press the Button.” This
module only requires two pins, namely the Serial Data Line

(SDA) and Serial Clock Line (SCL), making it more
practical and efficient than a regular parallel LCD. The use
of I2C LCDs is considered to simplify system design by
reducing the complexity of wiring and component
installation, as explained by Rizakir and Sukarno in their
research on Arduino-based automated systems [6].

5) Thermal Printer ESC/POS

 Figure 5. Thermal Printer ESC/POS

The Epson Standard Code for Point of Sale (ESC/POS)
thermal printer is used to automatically print parking tickets
via a serial connection to a laptop. With the help of the
python-escpos library, the printer can be controlled directly
from a Python application using print commands such as
text() and cut(). The official documentation states that it is
sufficient to specify the port (e.g., COM4) and baudrate
(9600) to send print commands via serial [7].

6) Supporting Tools (Breadboard, jumper cable, adaptor,
input button (push button))

 figure 6. Supporting tools used: breadboard, jumper cable, adaptor 5
V 2 A, and input button (push button)

It is a tool used in the assembly and testing process.
Breadboards and jumper cables are used to assemble
prototype circuits without soldering, adapters are used as a 5
V power source for components, and buttons are used as
manual user input when printing tickets.

B. System Series (Wiring Diagram)

This automatic parking system is designed to integrate
various electronic components that coordinate with each
other through an Arduino Uno microcontroller. Each
component has a specific function, such as ultrasonic sensors
that detect the presence of vehicles, servo motors that move
the parking barriers, and I2C LCDs that provide an
interactive display for users.

The input button (Push Button) is used as a trigger for
ticket printing, while the thermal printer will print ticket
information such as Identification (ID) or unique code, entry

time, and parking rates. All of these components are powered
by a 5 V adapter and connected using a breadboard and
jumper cables to facilitate prototype assembly without
soldering.

Cable arrangement and connections between components
are carried out carefully to ensure system stability and
prevent interference during the automation process.

 The following image shows the overall wiring
configuration of the system :

Figure 7. Wiring diagram for an Arduino Uno-based automatic parking
system

TABLE I. COMPONENT PIN CONNECTION

No. Component Component Pin
Connected to
Arduino Pin

1.
Ultrasonic Sensor 1

(In)
Trig D2

 Echo D3

2.
Ultrasonic Sensor 2

(Out)
Trig D7

 Echo D8

3.
Input Button (Push

Button)
1 foot D4

 The other foot GND

4. Servo 1 (Entry Gate)
Signal

(yellow/orange)
D5

5. Servo 2 (Exit Gate)
Signal

(yellow/orange)
D6

6. LCD 16x2 I2C SDA A4

 SCL A5

7. Adaptor 5 V 2 A VCC Breadboard +5 V

 GND Breadboard GND

Description:
 All VCC and GND connections from components such as
ultrasonic sensors, servo motors, and LCDs are not
connected directly to the power pins on the Arduino. Instead,
these components are powered from a breadboard connected
to an external 5 V 2 A adapter to ensure current and voltage
stability, especially when the system load increases.

Arduino only acts as a logic signal controller, namely
through digital pins and I2C pins (SDA/SCL) to control the

overall operation of the system, without burdening the
internal resources of the Arduino board itself.

C. System Flow and Flowchart

To facilitate understanding of the automatic parking
system's workings, a flowchart is used to illustrate the logic
of interaction between sensors, buttons, LCDs, servos, and
the Python GUI interface and thermal printer. This
flowchart represents the data flow and control logic from the
beginning to the end of the process.

The system is divided into two main parts, namely
vehicle entry and exit processes. Each has a structured,
automated, and integrated workflow so that the system can
work efficiently and respond to real conditions in the field.

1) Vehicle entrance lane

The process begins when the ultrasonic sensor detects
the presence of a vehicle near the entrance gate. After that,
the system will display a “Welcome” message on the LCD
as an initial greeting. The driver is then asked to press a
button to print a ticket. The system will automatically record
the time of entry, print the ticket through a thermal printer,
and send a signal to the servo motor to open the entrance
barrier. Once the vehicle has successfully entered and is no
longer detected by the sensor, the barrier will automatically
close again. This process is fast and requires minimal
manual intervention, improving the efficiency of incoming
traffic.

2) Vehicle exit lane

When the vehicle is about to exit, the user must enter the
ticket ID into the Python GUI via the computer interface.
The system will read the ticket data, then calculate the
parking duration based on the difference between the entry
time and the current time. After that, the system will display
the parking fee to be paid, which can be adjusted according
to specific tariff policies. If the validation process is
successful, the system will send a command to Arduino to
automatically open the exit barrier. Just like when entering,
after the vehicle has completely exited and is no longer
detected by the sensor, the barrier will automatically close
again, ensuring the safety and orderliness of the exit lane.

.

 Figure 8. Flowchart vehicle Figure 9. Flowchart vehicle
 entry process exit pricess

D. Software Implementation
The software in this automatic parking system is

designed using the Python programming language on the
computer side and the C/C++ language on the Arduino
microcontroller side. Communication between devices is
carried out bidirectionally via the Universal Asynchronous
Receiver Transmitter (UART) serial port with an easy-to-
integrate string-based protocol.

The software implementation is arranged according to the
flowchart in Figure 8 (vehicle entry process) and Figure 9
(vehicle exit process). Each block in the flowchart is
represented in the form of Arduino and Python code snippets
as follows.

1). Vehicle Entry Detection (Arduino)

// Arduino

long jarakMasuk = bacaJarak(TRIG_MASUK, ECHO_MASUK);

if (jarakMasuk <= 10) {

 Serial.println("MOBIL_TERDETEKSI");

 lcd.setCursor(0, 0);

 lcd.print("Selamat Datang!");

 lcd.setCursor(0, 1);

 lcd.print("Tekan Tombol");

}

The code above represents the “Vehicle detected by
sensor?” block in the vehicle entry process flowchart. If the
distance between the car and the sensor is less than 10 cm,
the system will display a “Welcome” message on the LCD
and send a signal to the computer via the serial port.

2). Process of saving entry times and printing tickets
(Arduino & Python)

// Arduino

if (digitalRead(BUTTON_PIN) == LOW) {

 Serial.println("TOMBOL_DITEKAN");

 lcd.clear();

 lcd.print("Cetak Tiket...");

 delay(2000);

 lcd.setCursor(0, 1);

 lcd.print("Silakan Masuk");

}

Python

 times = datetime.now()

def proses_tiket_masuk():

 tid = generate_id() # create a unique ticket ID

 masuk = times.strftime('%Y-%m-%d %H:%M:%S')

 simpan_tiket(tid, masuk) # save to CSV database

 cetak_tiket(tid, masuk) # print tickets

 kirim_perintah("BUKA_PALANG_MASUK") # open the
gate

The code in the snippet above represents the “Button
pressed ?” block in the flowchart. When the physical button
is pressed by the user, Arduino will display the status
“Printing Ticket...” on the LCD, then Python continues the
process by generating a unique ticket ID, recording the entry
time in the database, printing the parking ticket via a thermal
printer, and sending a command to the microcontroller to
open the entrance barrier so that vehicles can pass through.

 3). The barrier opens and closes after the vehicle passes
through (Arduino)

// Arduino

void bukaPalangMasuk() {

 servoMasuk.attach(SERVO_MASUK_PIN);

 gerakServoHalus(servoMasuk, 90, 0);

 Serial.println("PALANG_MASUK_DIBUKA");

 servoMasuk.detach();

}

tungguKendaraanKeluar(TRIG_MASUK, ECHO_MASUK,
servoMasuk, true);

if (perintah == "BUKA_PALANG_KELUAR") {

 Serial.println("PALANG_KELUAR_DIBUKA");

 bukaPalangKeluar();

 tungguKendaraanKeluar(TRIG_KELUAR, ECHO_KELUAR,
servoKeluar, true);

 Serial.println("PALANG_KELUAR_DITUTUP");

}

 The code snippet above represents the “Open entrance
barrier”, “Vehicle passes sensor”, and “Close barrier”
blocks on the automatic parking system flowchart. When a
vehicle enters, the servo slowly moves from the 90° position
to 0° so that the barrier opens. The tungguKendaraanKeluar
function ensures that the vehicle has completely passed the
sensor before the barrier is closed again. A similar process
applies when exiting: when the
“BUKA_PALANG_KELUAR” command is received from the
computer, the system opens the exit barrier, waits for the
vehicle to pass the sensor, and then automatically closes the
barrier again.

According to Pradana et al., the application of serial
communication between Arduino Uno and desktop
applications has proven effective in smart parking systems,
enabling the direct exchange of sensor status and barrier
commands without the need for additional networks [8].

1) Arduino and Python Communication

The Arduino Uno reads data from ultrasonic sensors and
input buttons (push buttons), and controls actuators such as
servo motors and LCDs. When a vehicle is detected by the
sensor and the button is pressed, the Arduino sends a specific
signal via USB serial to the Python interface.

Conversely, Python can also send commands back to
Arduino to move the servo, open or close the gate, and set
the system flow sequence. The communication protocol is
carried out using regular text messaging.

Example signal:

 "KENDARAAN_TERDETEKSI": sent from Arduino
when the sensor detects a vehicle

 "TOMBOL_DITEKAN": sent when the button is pressed

 "BUKA_PALANG_MASUK" and
"BUKA_PALANG_KELUAR": sent from Python to
Arduino to control the servo.

2) User Interface (GUI)

The user interface was created with the Tkinter library,
Python's built-in GUI module. This GUI has two main
functions:

1. Entry Ticket Recording When the button signal is
received, the system records the ticket ID and entry time
in a CSV file (data_tiket.csv) and immediately prints the
ticket.

2. Exit and Fee Calculation The user enters the ticket ID.
The system calculates the duration based on the entry
time and the current time, then displays and prints the
parking fee.

Additional GUI features:

 Display a list of parked vehicles

 Save all data to a local file

 Directly connected to a thermal printer (ESC/POS).

3) Automatic Ticket Printing

The parking ticket printing system uses a thermal printer
that supports the ESC/POS protocol and is connected via a
serial port (e.g., COM4). The Python interface manages
printing using the python-escpos library, which allows text
to be sent directly to the printer. The information printed
includes the ticket ID, entry time, and hourly rate. Once the
ticket is printed, the GUI immediately sends a signal to the
Arduino to open the entry gate.

III. RESULTS AND DISCUSSION

After going through the design and testing process, the
result was a prototype of an automatic parking system built
using an Arduino Uno microcontroller and a Python-based
GUI interface. This prototype was realized in the form of a
miniature parking booth that represented the main features of
an automatic parking system, such as vehicle detection,
ticket printing, and control of entry and exit barriers. The
physical visualization of the implemented system is shown in
Figure 10.

Figure 10. Miniature prototype of an automated parking system.

A. System Implementation Results

This automatic parking system consists of several main
components, namely Arduino Uno as the control center, HC
SR04 ultrasonic sensor, servo motor, input button (push
button), 16×2 LCD, and thermal printer. These components
have been proven effective in various similar studies.
Research by Auliani et al. shows that the Arduino Uno and
HC SR04 can be used accurately and responsively in
microcontroller-based automatic parking systems through
simulations and prototypes that have been tested for
functionality [9].

The entire system is assembled in the form of a miniature
parking booth. When a vehicle is detected by the entry
sensor, the LCD displays a message, then a button is pressed
to print a ticket. The entry data is automatically stored, the
barrier opens, and closes again after the vehicle passes the
sensor.

 Figure 11. The vehicle is detected by the sensor upon entry
 and the system automatically prints a ticket.

 For the exit process, the sensor will detect that a vehicle
wants to exit. The driver gives the ticket to the operator, who
simply enters the ticket ID on the GUI, then the system
calculates the parking duration and displays the total cost.

Figure 12. Python GUI Interface for entering vehicle
 exit ticket IDs

After the ticket ID is entered by the operator into the
GUI, the system will automatically process the data and send
a command to the Arduino to open the exit barrier. When a
vehicle is detected exiting through the ultrasonic sensor, the
system will wait until there are no more objects in the sensor
area, then the barrier will automatically close again. This
process ensures that the vehicle has completely left the
parking area before the barrier closes again, thus avoiding
errors upon exit.

According to Tanjung et al., the application of ultrasonic
sensors on automatic parking barriers ensures that the barrier
will only close after the vehicle has completely passed
through, thereby improving accuracy and preventing
operational disruptions [10].

Figure 13. Simulasi Simulation of vehicles exiting
through automatic barriers
.

B. Component Function Testing

Testing was conducted on all components used in the
automatic parking system to ensure that they functioned as
designed. The following are the test results for each
component:

 HC-SR04 Ultrasonic Sensor: This sensor can detect
vehicles at a distance of less than 15 cm. When a
vehicle is detected at the entrance gate, the sensor
sends a signal to the Arduino to display the message
“Welcome” on the LCD and activate the ticket input
flow. The sensor is also used at the exit gate to
detect vehicle movement before and after the barrier
opens. The effectiveness of the HC-SR04 in
detecting close-range objects has been proven in
research by Brilliantoro & Fitriani, where this
sensor was able to provide accurate responses in an
Arduino-based system [11]. After the vehicle is
detected by the sensor. The test results show that
Arduino receives the input well and immediately
executes the ticket printing process and opens the
barrier. No delays or interruptions were found in the
input retrieval.

 Two servo motors are used to move the barrier in
and out. The servo movement is smooth and
responsive. The servo opens after the ticket is
printed, then closes again after the vehicle is no
longer detected by the sensor. The servo function
has also been tested with a simulation of a vehicle
exiting, and shows stable performance. This is in
line with research results showing that the use of
two servo motors in an automatic parking barrier
system is capable of producing automatic,

responsive, and stable opening and closing
movements after a vehicle is detected by an
ultrasonic sensor [12].

 16x2 I2C LCD, used as an information display
during the parking process. Testing shows that the
LCD can display dynamic messages such as
“Welcome”, “Press Button”, and “Parking System”.

 Thermal Printer, Printer connected via COM4 serial
port. Testing was conducted by printing tickets
when the button was pressed. The printer can print
ticket information quickly and clearly, as long as
serial communication is not interrupted.

 Arduino–GUI (Python) Serial Communication,
Two-way communication via the COM3 port has
been tested and is running stably. Arduino
successfully sends commands such as
KENDARAAN_TERDETEKSI and
TOMBOL_DITEKAN to the Python GUI.
Conversely, the BUKA_PALANG_KELUAR
command from the GUI can be received by Arduino
and executed according to the system logic.

Overall, all components were successfully tested and
demonstrated good functionality. Inter-component
interactions also ran synchronously, enabling the system to
execute the automatic parking flow completely and
efficiently.

TABLE II. SUMMARY OF PARKING SYSTEM COMPONENT TEST

RESULTS

No. Component Function Brief Test Results

1.
HC-SR04
(Sensor)

Detection of
vehicles entering

and exiting

Stable response at
a distance ≤ 15 cm

2.
Input Button
(Push Button)

Ticket printing
trigger

No delay, stable
input

3. Servo Motor

Automatic
crossbar

movement in &
out

Smooth, accurate,
open-close
function

4. LCD 16x2 I2C
Information

Display

Messages appear
directly without

error

5. Thermal Printer
Print parking

tickets
Fast, clear, via
COM4 serial

6.
Arduino – GUI

Serial
System

communication

Bidirectional
stable (COM3 &
COM4 active)

Table II summarizes the main test results for each
component that makes up this automated parking system. All
components operate synchronously according to a pre-
designed logic flow.

C. System Advantages and Limitations

This automated parking system has a number of
advantages that support the efficiency and effectiveness of
the parking process, especially on a prototype scale and in a
limited environment. One of the main advantages is the
system's ability to run the entire process automatically, from
vehicle detection and ticket printing to controlling the entry
and exit barriers. The integration between the hardware
(Arduino) and software (Python GUI) runs smoothly and
stably. The system is also designed to be user-friendly with

a simple interface that is easy for parking attendants to
operate.

In addition, the use of ultrasonic sensors as vehicle
detectors has proven effective in identifying the presence of
vehicles at short distances. The use of thermal printers that
can be used immediately without requiring complex
configuration or driver installation is an added value
because it enables instant and efficient ticket printing. The
addition of an LCD as an information medium further
strengthens the interactive aspect of the system. This is in
line with the findings of Savitri and Paramytha, who stated
that thermal printers in parking systems can print
information directly without the need for further
configuration, thereby speeding up the process and
minimizing technical errors [13].

However, this system still has several limitations. One of
them is the limited detection range of ultrasonic sensors,
which are only optimal at a certain distance range (5–15
cm), so the system is not yet fully ready to be applied on a
large scale in the field without modification. This is in line
with research by Nugroho et al., which states that ultrasonic
sensors have limited accuracy under certain conditions, such
as uneven surfaces and inconsistent object reflections [14].
In addition, dependence on a cable connection between the
Arduino and laptop can limit the flexibility and mobility of
the system. The system is also not equipped with an online
database or data backup feature, so data is only stored
locally in CSV files. On the other hand, ticket ID input still
requires the involvement of an operator, so it is not yet
completely free of manual interaction. As stated by Bahri &
Hutagalung, smart parking systems that do not use
centralized storage and still rely on manual input will face
efficiency issues and the risk of data loss [15].

By understanding these advantages and limitations, this
system can be further developed to become a more robust
automated parking solution that is ready to be implemented
on a wider scale.

IV. CONCLUSION

This research successfully designed and implemented a
prototype of an Arduino Uno microcontroller-based
automatic parking system integrated with a Python-based
GUI software interface. This system is capable of performing
the parking process automatically, from vehicle detection,
ticket printing, entry time data storage, to fare calculation
and exit gate opening.

The tests conducted showed that all system components,
including ultrasonic sensors, servo motors, input buttons
(push buttons), LCDs, and thermal printers, worked well and
were fully integrated. The system can respond to real-world
conditions such as the presence of vehicles in front of the
barrier, and is capable of printing tickets and calculating
fares automatically based on parking duration.

The advantages of this system lie in its automated
parking flow, hardware and software integration, and simple
user interface. However, the system still has several
limitations, such as limited sensor range, dependence on data
cables, and the lack of a cloud-based storage system.

Overall, this prototype shows potential as an initial
solution in the development of small-scale automated
parking systems, and can be further improved to support
implementation in real-world environments with the addition
of features such as Quick Response (QR) Code reading,
Internet of Things (IoT)-based monitoring, and wireless
connectivity.

REFERENCES

[1] M. Monica Mardhalena and N. Dian Nathasia, “Parking Sensor
System Untuk Mendeteksi Jarak Aman Kendaraan Menggunakan
Sensor Ultrasonic Berbasis Arduino Uno Atmega328,” Jakarta,
2022.

[2] F. Priyulida, R. A. Putra, and H. Situmorang, “Palang Pintu Parkir
Otomatis Berbasis Arduino Uno,” Go Infotech: Jurnal Ilmiah
STMIK AUB, vol. 30, no. 1, pp. 87–95, Jun. 2024, doi:
10.36309/goi.v30i1.263.

[3] S. Tammimah, “Sistem Ketersediaan Slot Parkir Mobil
Menggunakan Mikrokontroler Atmega328p (Studi Kasus : Stt
Wastukancana).”

[4] T. N. Arifin, G. Febriyani Pratiwi, and A. Janrafsasih, “Sensor
Ultrasonik Sebagai Sensor Jarak,” vol. 2, pp. 55–62, Jul. 2022,
[Online]. Available: http://jurnal.undira.ac.id/index.php/jurnaltera/

[5] M. Khamidah, W. Suciyati, H. R. Ayu, G. A. Pauzi, and A. Royhan,
“Activator Token KWh Meter Using Servo Motor SG90 Based on
Arduino Uno Microcontroller,” Lampung, Apr. 2023. [Online].
Available: https://jemit.fmipa.unila.ac.id/

[6] F. Rizakir and S. A. Sukarno, “Sistem Kunci Otomatis Pada Casing
Rokok Berbasis Arduino Nano Dengan Lcd I2c,” Jurnal Informatika
dan Teknik Elektro Terapan, vol. 13, no. 1, Jan. 2025, doi:
10.23960/jitet.v13i1.5661.

[7] python-escpos developers, “python-escpos Documentation – Serial
Printer,” ReadTheDocs / GitHub.

[8] R. G. Pradana, “E-Jurnal Prodi Teknik Elektronika Edisi Proyek
Akhir D3,” Yogyakarta, 2016.

[9] Qonita Auliani, Riyan Aditya, Muhammad Dicky Saputra,
Muhammad Aldi Firdaus, Bryant Reza Pahlevi, and Didik Aribowo,
“Simulasi Sensor Parkir Berbasis Mikrokontroler Arduino Uno
dengan Sensor HC-SR04 Menggunakan Website Wokwi,” Jurnal
Teknik Mesin, Industri, Elektro dan Informatika, vol. 3, no. 4, pp.
259–273, Nov. 2024, doi: 10.55606/jtmei.v3i4.4557.

[10] R. A. Tanjung, T. Rijanto, F. Baskoro, and R. Firmansyah,
“Pengembangan Sistem Palang Pintu Otomatis Di Tempat Parkir FT
UNESA Menggunakan Sensor RFID dan Sensor Ultrasonik Berbasis
Bot Telegram,” Surabaya, 2025.

[11] B. Brilliantoro, “Rancang Bangun Alat Pendeteksi Jarak Aman
Mobil Menggunakan Sensor Ultrasonik Hc-Sr04 Dan Arduino
Uno,” Bandung.

[12] M. H. Susanta, “Prototype Penggunaan Empat Sensor Ultrasonik
Pada Palang Parkir Otomatis Berbasis Arduino Uno,” Jurnal Ilmiah
Sains dan Teknologi, Jul. 2024.

[13] C. E. Savitri and N. Paramytha, “Prototipe Sistem Monitoring Parkir
Mobil Berbasis Esp32 Di Universitas Bina Darma Palembang,”
Jurnal Ampere, 2023, doi: 10.31851/ampere.

[14] E. Surya Aby Nugroho, N. Diana Resty, I. Hudati, and P. Studi
Sarjana Terapan Teknologi Rekayasa Instrumentasi dan Kontrol
Fakultas Sekolah Vokasi, “Implementasi Filter Kalman Pada Sensor
Jarak Berbasis Ultrasonik,” Jurnal Listrik, Instrumentasi dan
Elektronika Terapan, vol. 2, no. 2, Oct. 2021.

[15] S. Bahri and D. Durbin Hutagalung, “Sistem Parkir Cerdas Berbasis
Internet Of Things,” OKTAL : Jurnal Ilmu Komputer dan Science
Sistem Parkir Cerdas Berbasis Internet Of Things, vol. 2, Nov.
2023, Available: https://journal.mediapublikasi.id/index.php/oktal

