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Abstract

The quality of Magnetic Resonance Imaging (MRI) images is often compromised by various types
of noise, such as salt, pepper, salt-and-pepper, and speckle noise, caused by technical or
environmental disturbances. This study aims to develop a brain MRI image denoising model
based on the U-Net architecture, capable of effectively removing different types of noise. The
methodology includes collecting normal brain MRI datasets, applying data augmentation to
increase variability, and introducing artificial noise to simulate possible noise conditions. The U-
Net model is trained and evaluated using the Mean Squared Error (MSE) and Peak Signal-to-
Noise Ratio (PSNR) metrics. The novelty of this study lies in its combination of augmentation
techniques, multi-intensity artificial noise variations, and its exclusive focus on normal brain MRI
images. The results demonstrate that the U-Net model achieves optimal performance on salt-and-
pepper noise at an intensity of 0.1, marked by the highest PSNR value of 37.2047 dB and the
lowest MSE value of 0.000207. Conversely, the model shows the lowest performance on high-
intensity speckle noise, indicating greater challenges in addressing multiplicative noise. This
study contributes a systematic and empirically tested approach to improving the quality of brain
MRI images with high efficiency, supporting the development of image-based diagnostic systems
in the medical field.
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1 INTRODUCTION

In the medical field, medical imaging plays a vital role in assisting healthcare professionals
in disease diagnosis and health condition analysis. Medical images represent two-dimensional
patterns that visualize the internal structure of the human body. Among the various available
medical imaging techniques, one of the most frequently utilized methods is Magnetic Resonance
Imaging (MRI), which uses magnetic fields to produce detailed images of organs and body tissues
[1].

However, the quality of MRI images is often compromised by the presence of noise or
artifacts. These artifacts can hinder accurate diagnostic interpretation by medical professionals,
creating the need for effective image enhancement methods. Image quality degradation can occur
during the MRI acquisition process, where unwanted elements such as noise or artifacts may
appear [2]. Digital image enhancement techniques are thus crucial for improving image clarity
and usability, enabling healthcare professionals to better understand human anatomy and make
accurate diagnoses. Poor-quality medical images can lead to inaccurate assessments of a patient's
health condition, potentially affecting treatment decisions.

Various approaches have been employed for noise reduction (denoising), including
traditional methods such as spatial domain filtering, variational denoising, and transform domain
filtering. Modern approaches, such as machine learning, refer to the ability of systems to learn
from specific training data to produce analytical models capable of performing designated tasks.
The addition of noise is used to enhance the model’s feature extraction capability. By training the
model on data with added noise, the model can learn to extract key features from noisy images,
thus improving its overall performance [3].
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2 LITERATURE REVIEW

A study conducted in 2024 [4] employed a contrast enhancement algorithm to improve the
quality of X-ray images, thereby assisting medical professionals in making more accurate
diagnoses and treatment decisions. The research proposed a contrast enhancement approach that
considers the local characteristics of X-ray images. The method involves dividing the image into
small fragments, then applying different contrast enhancement algorithms to each fragment. Each
fragment is evaluated based on the Root Mean Square (RMS) criterion, and the algorithm that
yields the highest RMS value is selected as the optimal algorithm for that fragment.

Another study in 2024 examined various denoising algorithms used to remove noise in MRI
images [5]. MRI is often affected by random noise that can be modeled as Gaussian or Rician
distributions. This study reviewed multiple existing denoising algorithms and found that the Non-
Local Means (NLM) filter performed better than other established methods. Additionally, it
explored improvements to the NLM approach. The evaluation showed that combining Principal
Component Analysis (PCA) with NLM resulted in superior performance both quantitatively and
qualitatively.

A 2023 study [6] implemented a denoising method specifically for brain MRI images. To
address the problem of noise in medical images, the study utilized a Convolutional Denoising
Autoencoder (CDAE) as the method for removing noise from brain MRI images. CDAE was
chosen for its ability to extract important information while preserving spatial details of the image,
resulting in more accurate and efficient denoising. The model evaluation demonstrated strong
performance, with a Structural Similarity Index Measure (SSIM) of 0.85 and a Peak Signal-to-
Noise Ratio (PSNR) of 30 dB.

In 2021, a study [7] aimed to eliminate noise caused by technical or environmental errors.
Denoising not only improves image quality but also facilitates other image processing tasks.
However, classical denoising techniques were considered less efficient and flexible. Therefore,
the study compared two promising neural network architectures for tackling these issues:
Autoencoder and U-Net. The study implemented and evaluated several models of both
architectures using a preprocessed dataset. The evaluation used standard image quality metrics,
namely PSNR and SSIM. Experimental results showed that the U-Net model produced better
denoised images compared to the basic Autoencoder. The outputs of the Autoencoder were
generally blurry, whereas the skip-connections in U-Net effectively preserved image details,
resulting in higher PSNR and SSIM values.

The main research gap identified from previous studies is the lack of investigations that
explicitly induce various types of artificial noise such as salt noise, pepper noise, salt-and-pepper
noise, and speckle noise into MRI datasets and then use the U-Net architecture to handle each
noise type. Moreover, model performance in removing various types of noise has not been
systematically evaluated using quantitative metrics such as Mean Squared Error (MSE) and Peak
Signal-to-Noise Ratio (PSNR) [8]. Therefore, this study aims to develop a model capable of
enhancing medical images degraded due to technical or environmental disturbances.

3 RESEARCH METHODOLOGY

This research is structured to ensure a systematic process from start to finish. The
methodology serves as a guide for organizing each stage of the study, from data collection,
augmentation, artificial noise induction, development of the U-Net deep learning-based model, to
the evaluation phase. This workflow is designed so that every phase aligns with the research
objective—particularly in developing an effective and accurate brain MRI image denoising
system. Figure 1 further supports this explanation by visually illustrating the stages of the research
process.
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Figure 1. Research Methodology

3.1 Data collection

This step in the research involves collecting brain MRI images from a Kaggle dataset called
“Crystal Clean: Brain Tumors MRI Dataset.” This dataset consists of two main categories: normal
brain MRI images and brain MRI images with tumors. For this study, only normal brain MRI
images will be utilized. The use of normal images as the focus of this research allows for a more
controlled evaluation of the effectiveness of the U-Net model. The dataset includes three types of
human head orientations based on the fundamental MRI imaging planes: side view (sagittal
plane), front-to-back view (coronal plane), and top-to-bottom view (axial plane) [9] [10], as
shown in Figure 2, which sequentially displays examples from this MRI dataset.

Figure 2. Sample of Brain MRI Dataset
Figure 2 is, the MRI images used in this study are in “jpg” format. For the purpose of model
training, a total of 417 normal brain MRI images were collected as training data. This substantial
sample size enables the model to learn various patterns and structural features present in normal
brain MRI images. Additionally, to comprehensively evaluate the model's performance, 104
normal brain MRI images were used as validation data. The use of a separate validation dataset
ensures an objective assessment of the model's generalization ability on unseen images.

3.2 Augmentation

Augmentation is a crucial step in this research to increase the variability of the training data
without the need for additional data collection [11][12]. This process includes quality control of
the data to ensure the integrity of the dataset, standardization of image resolution to a uniform
size of 255x255 pixels, and conversion of the images to grayscale format. The process involves
modifying the brain MRI images using various augmentation techniques, such as brightness
adjustment, darkening, horizontal/vertical flipping, and rotation. The goal of this process is to
improve the model's generalization, reduce the risk of overfitting, and allow the model to
recognize important features more accurately despite variations in visual disturbances such as
noise [13]. This approach strengthens the model's resilience to handle complex and diverse data,
enabling it to deal with various variations in input data. Augmentation aims to enhance the model's
generalization by simulating real-world conditions with varied characteristics [14][15].
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Figure 3. Sample of Brain MRI Dataset

Figure 3 is After augmentation using five methods, the training dataset increased to 2,085
samples, and the validation dataset increased to 520 samples. The data split ratio for this process
was 80:20 from the 2,605 MRI images. This split is a common practice in machine learning model
development, providing a good balance between sufficient training data and a representative
sample for validation [16][17]. By using a validation set during training, researchers can monitor
metrics such as MSE and PSNR to detect issues such as overfitting or underfitting, and make
necessary model parameter adjustments.

3.3 Noise Induction

Artificial noise was added to the brain MRI images as part of the training and validation
phases of the model [18]. The main purpose of adding this noise is to simulate real-world
conditions where MRI images may be disturbed by various factors, such as magnetic field
interference, patient movement, or hardware limitations. Since MRI images with artifacts are
difficult to obtain, adding artificial noise becomes an important strategy to create representative
training data. In this way, the model can learn to recognize and remove noise, improving its ability
to restore image quality and maintain the diagnostic value of medical images.
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Figure 4. Noise Induction
The addition of artificial noise types such as Salt Noise, Pepper Noise, Salt & Pepper Noise,
and Speckle Noise aims to create realistic challenges for the model during the denoising process,
as shown in Figure 4. The result of this stage is two datasets: the training data and the validation
data, each consisting of both clean and noisy versions, as illustrated in Figure 5. This approach
allows the model to learn comprehensively from various image conditions, thereby improving the
model's generalization ability and effectiveness in removing noise from brain MRI images [19].
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Figure 5. Clean and Noisy Data Sets

3.4 U-Net Architecture

The U-Net architecture designed in this study is specifically used for the task of image
denoising, which is the process of removing noise from input images to recover clean and high-
quality images [20]. U-Net is a type of convolutional neural network (CNN) architecture that has
proven effective in various image processing applications, especially in the medical field. One of
the main advantages of U-Net lies in its symmetric structure, which consists of an encoder and
decoder path, allowing the model to capture both local and global features effectively.

Additionally, U-Net is equipped with skip-connections—direct links between layers in the
contracting path and layers in the expanding path. This mechanism is crucial as it helps retain
spatial information, which is often lost during the downsampling process. In the context of
denoising [20], the ability to preserve spatial details is critical to ensure that the final image
remains sharp and does not lose important structures, especially in medical images such as brain
MRI scans. The illustration of the U-Net architecture used can be seen in Figure 6.
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Figure 6. U-Net Architecture

In Figure 6, the U-Net architecture consists of three main parts: the encoder (contracting
path), the bottleneck, and the decoder (expansive path). The encoder is responsible for extracting
important features from the input image [21], where the input image has a size of 256x256 pixels
with one channel (grayscale). This process is done step-by-step through convolutional blocks and
downsampling. Each block consists of two Conv2D layers with the number of filters sequentially
setto 64, 128, and 256, a kernel size of 3%3, padding “same,” and ReLU activation, each followed
by Batch Normalization to stabilize activation distribution and speed up the training process. After
two convolutional layers, a MaxPooling2D process with a 2x2 size is applied to reduce spatial
dimensions while retaining important features of the image.

The bottleneck layer is located at the innermost part of the network and serves as the most
compact and meaningful feature representation [22]. In this section, two Conv2D layers with 526
filters, a 3x3 kernel, “same” padding, and ReLU activation are used, each followed by Batch
Normalization. There is no downsampling or upsampling in this section.

After the bottleneck, the decoder part reconstructs the image from the compact feature
representation back into its original spatial form [23]. This process is done through upsampling
with a 2x2 factor by Conv2DTranspose to increase spatial dimensions. Each decoder block
consists of one Conv2DTranspose layer and one Conv2D layer, with filters sequentially set to
256, 128, and 64. Each layer uses a 3x3 kernel, “same” padding, and ReLU activation, followed
by Batch Normalization. To retain important spatial information from the encoder, skip-
connections are used to concatenate features from the corresponding encoder layer to the decoder
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layer at the same resolution. Finally, the output layer uses Conv2D with a 1x1 kernel and sigmoid
activation to generate the output image with pixel values in the range [0,1]. This model is
compiled using the Adam optimizer and MSE loss function for image reconstruction and
denoising tasks.

3.5 Testing Scenario

This study uses an evaluative approach to assess the effectiveness of the U-Net model in
removing various types of noise from brain MRI images. In the testing phase, four types of
artificial noise are used: Salt, Pepper, Salt & Pepper, and Speckle Noise, each tested at three levels
of variance (0.05, 0.10, and 0.15) [24]. These variances represent the level of disturbance in the
images, either in the form of the proportion of pixels affected by noise (for Salt, Pepper, and Salt
& Pepper) or the intensity of multiplicative noise (for Speckle Noise), as shown in Table 1.

Table 1. Testing Parameters

Parameter Value

Noise Salt, Pepper, Salt and Pepper, Speckle
Variance 0,05;0,1; 0,15

Evaluation Metric MSE, PSNR

The model is trained using the Mean Squared Error (MSE) loss function, which aims to
minimize the difference between the reconstructed image and the original image. In addition, the
PSNR metric is also used to evaluate the quality of the reconstruction results. A high PSNR
indicates a low level of disturbance and better image quality [25]. With a training configuration
that includes a small batch size, such as 8, a relatively low number of epochs, such as 20, and the
use of the ADAM optimizer, this study aims to balance training efficiency and model accuracy.
This strategy allows for a quick assessment of the model’s performance, as well as helps identify
the strengths and weaknesses of U-Net in handling specific types of noise.

MSE = =S¥ Sh3G)) — K ))? (1)

The Mean Squared Error (MSE) in equation (1) is one of the most commonly used evaluation
metrics to assess image reconstruction quality in various digital image processing applications.
This metric calculates the average of the squared differences between the pixel intensities of the
original image and the reconstructed image. A lower MSE value indicates that the reconstruction
result has a small error compared to the original image, thus it is considered to have better quality
[26]. On the other hand, a high MSE value indicates a significant difference between the original
image and the reconstructed result, which reflects a degradation in quality.

(data range)?

PSNR = 10 X logy o9 )

The Peak Signal-to-Noise Ratio (PSNR) in equation (2) is a metric used to measure image
reconstruction quality by comparing the original image with the reconstructed image. PSNR
represents the ratio between the maximum signal strength of the original image and the strength
of noise that degrades the image representation. A higher PSNR value indicates that the
reconstructed image has lower distortion, thus the image quality is better and closer to the original
image [26]. A high PSNR value indicates that the reconstructed image has visual quality similar
to the original image, with minimal distortion. PSNR values above 30 dB are generally considered
good, as high image quality is crucial for accurate medical diagnosis purposes [27]. On the other
hand, PSNR values below 20 dB often reflect significant distortion, where the image becomes
blurry or heavily affected by noise, potentially interfering with visual interpretation [27][28].
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4 RESULTS AND DISCUSSION

Table 2. Training and Validation Loss Curve Graph

Noise Intensity
Type 0,05 0?1 0,15
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\\\
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Validation MSE final : 0.00041 Validation MSE final : 0.00056 Validation _MSE final : 0.00038
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Training MSE first : 0.0462
Training_MSE final : 0.0014
Validation MSE first : 0.0479
Validation MSE final : 0.00068
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Training MSE first : 0.0458
Training_MSE final : 0.0015
Validation MSE first : 0.0504
Validation MSE final : 0.0014

Training MSE first : 0.0481
Training_MSE final : 0.0016
Validation MSE first : 0.0524
Validation MSE final : 0.0018

Table 2 presents the training loss curve (blue line) and validation loss curve (yellow line) of
the U-Net model for each type of noise—namely Salt, Pepper, Salt and Pepper, and Speckle—at
three different intensity levels (0.05, 0.1, and 0.15). The Y-axis in the graph represents the MSE
value, while the X-axis represents the number of epochs. Overall, the declining pattern of MSE
loss indicates that the model successfully performed the learning process, as evidenced by the
consistent decrease in both training and validation loss as the number of epochs increases.

As shown in Table 2, for Salt noise, the model exhibits a sharp loss reduction at the beginning
of training and stabilization in the subsequent epochs, both for training and validation data. This
significant reduction reflects the model's ability to extract relevant features early in the learning
process, even though the images have been contaminated by impulsive unipolar noise such as

Salt.

The loss curve pattern for Pepper noise, although showing slight fluctuations in the validation
loss curve—particularly at intensities of 0.1 and 0.15 as seen in Table 2—may indicate variations
in the model's generalization capability against this type of noise. These fluctuations suggest a
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variation in the model's ability to generalize to Pepper noise, which is characterized by random
dark spots in the image.

In the case of Salt and Pepper noise, Table 2 shows that the loss curves exhibit a similar
pattern to those of the Salt noise. This indicates good performance, as reflected in the rapid and
consistent decrease in both training and validation loss throughout the training process. The
parallel decline in loss values between the training and validation data indicates that the model
not only adapts well to the training data but also maintains its generalization ability on unseen
data.

Meanwhile, for Speckle noise, the curves show slightly more significant fluctuations in
validation loss, as seen in Table 2, particularly at the lower intensity (0.05), which may suggest
that this type of noise is more challenging to reconstruct consistently by the model, especially in
terms of generalization. Overall, these graphs demonstrate that the U-Net model has stable
learning capabilities to handle various types of noise, although differences in stability and
convergence speed exist depending on the type and intensity of the noise used.

Table 3. Denoising Performance

PSNR MSE
Noise Type
0,05 0,1 0,15 0,05 0,1 0,15
Salt 35,4287dB | 37,4250dB | 35,4003dB | 0,000321 | 0,000193 | 0,000321
Papper 34,6990dB | 36,7617dB | 35.5391dB | 0,000366 | 0,000223 | 0,000297
Salt and Papper | 35,2931dB | 37.2047dB | 35.2127dB | 0,000318 | 0,000207 | 0,000328
Speckle 32.4261dB | 29.1379dB | 27.5417dB | 0,000593 | 0,001266 | 0,001831

Table 3 presents the PSNR and MSE metrics for the four types of noise at three intensity
levels: 0.05, 0.1, and 0.15. For Salt noise, the highest PSNR is achieved at the medium intensity
level (0.1), reaching 37.43 dB, while the lowest MSE is also recorded at the same intensity, with
a value of 0.000193. This indicates that the U-Net model is most effective at removing salt noise
at moderate intensity, resulting in image reconstructions that are very close to the original. At the
lower intensity level (0.05) with 35.43 dB and at the higher intensity (0.15) with 35.40 dB, the
PSNR slightly decreases, accompanied by a minimal increase in MSE. This suggests that
increasing noise intensity beyond the optimal threshold has only a minor impact on the final image
quality.

In the Pepper noise row of Table 3, it is observed that the PSNR peaks at intensity 0.15 with
35.54 dB, while the lowest MSE is obtained at intensity 0.1 with a value of 0.000223. Although
the PSNR at low intensity (0.05) is slightly lower (34.70 dB), the overall PSNR range is relatively
small, indicating that the model performs well in handling random black spots in the image.

For the Salt and Pepper combination, the model’s performance is nearly on par with that of
the individual noise types. The highest PSNR is obtained at intensity 0.1 with 37.21 dB, and the
lowest MSE is also at this level, with a value of 0.000207. The changes in PSNR and MSE across
the three intensities are relatively consistent, suggesting that the model can reconstruct images
effectively even when both noise types are present simultaneously. Similar to the loss curves, the
performance results for Salt and Pepper noise closely resemble those of Salt noise alone.

In contrast, Speckle noise demonstrates the lowest performance among all noise types. The
PSNR drops significantly as intensity increases—starting from 32.43 dB at 0.05 down to 27.54 dB
at 0.15. The MSE rises sharply from 0.000593 to 0.001831. This indicates that Speckle noise,
which is multiplicative and continuously distributed, poses a greater challenge for removal using
the U-Net architecture, particularly at higher contamination levels.
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S CONCLUSION

Based on the analysis of the training and validation loss curves, as well as the evaluation
metrics PSNR and MSE presented in Tables 2 and 3, it can be concluded that the U-Net model
has a strong capability in performing denoising on images contaminated by various types of noise.
The model demonstrates the most optimal performance on impulsive noise types such as Salt,
Pepper, and the combination of Salt and Pepper, particularly at moderate intensity levels (0.1), as
indicated by high PSNR values and low MSE. Based on the analysis presented, Salt and Pepper
noise at intensity 0.1 is the type of noise that is best handled by the U-Net model. This is reflected
in the highest PSNR value of 37.2047 dB and the lowest MSE value of 0.000207, as shown in
Table 3. With a PSNR distortion above 30 dB, the noise can be effectively removed, and image
details are preserved.

The results reflect the model’s ability to extract important features and effectively reconstruct
images, even with spatial disturbances. On the other hand, the model’s performance significantly
declines with Speckle noise, particularly at high intensity levels, which indicates that
multiplicative and continuously distributed noise is more challenging to reduce by the U-Net
architecture. In general, these results indicate that the efficiency of the U-Net model in the
denoising process is highly influenced by the characteristics and intensity levels of the noise used,
and it suggests that architectural adaptations or additional training strategies may be necessary to
improve performance on more complex noise types.

This research opens up several promising directions for future studies. One potential
development is enhancing the model architecture by adding extra regularization layers to improve
the model's generalization and stability. Furthermore, the scope of the research could be expanded
to include other types of noise commonly encountered in medical imaging, such as Poisson Noise
(also known as Shot Noise) and Periodic Noise, which were not covered in this study. Heavier
hyperparameter optimization strategies could also be explored, especially if more powerful
computational resources are available. Although clinical implementation was not the main focus
of this study, future research could examine the application of these denoising techniques in a
clinical context, including real-time processing capabilities and integration with existing medical
imaging workflows.
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