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Abstrak 
Temperatur udara merupakan parameter yang sangat esensial dalam metode prakiraan cuaca dan juga sebuah variabel 
yang sangat vital dalam memprediksi pola cuaca di masa yang akan datang. Sistem prediksi temperatur yang akurat dapat 
membantu manusia maupun sebuah lembaga organisasi dalam mempersiapkan aktifitas yang sangat dipengaruhi oleh 
kondisional dari cuaca. Oleh karena itu untuk mendapatkan sebuah model prediksi temperatur yang presisi dibutuhkan 
sebuah algoritma yang handal dan efektif. Pada penelitian ini digunakan implementasi dari algoritma Long Short – Term 
Memory (LSTM) yang merupakan salah satu jenis jaringan syaraf tiruan (Recurrent Neural Network – RNN) dengan proses 
dekomposisi data time series untuk proses input variabel. LSTM dirancang untuk menangani data sekuensial atau jenis 
data time series seperti jenis data cuaca. Selain itu, digunakan LSTM-GRU dan LSTM-Conv1D. Data yang digunakan pada 
penelitian ini merupakan data temperature udara yang bersumber dari Badan Metereologi dan Geofisika (BMKG) wilayah 
DKI Jakarta. Untuk evaluasi model digunakan kriteria MAE dan RMSE terkecil. Berdasarkan eksperimen yang telah 
dilakukan didapatkan nilai Mean Absolute Error (MAE) dan Root Mean Square Error (RMSE) sistem prediksi berbasis 
LSTM-GRU adalah yang terkecil dibandingkan LSTM dan LSTM-Conv1D baik pada 10, 20, dan 30 step. Sehingga dapat 
disimpulkan bahwa algoritma LSTM-GRU mampu memberikan prediksi yang paling akurat dibandingkan model LSTM dan 
LSTM-Conv1D untuk data sekuensial temperature, dengan kondisional data yang tersedia mencukupi dan model 
dikonfigurasikan dengan benar. Hal ini juga ditunjukkan secara grafis dengan nilai hasil prediksi yang mendekati data asli.  

Kata Kunci: time series, suhu udara, prediksi, deep learning, LSTM 

Abstract 
Air temperature is a highly essential parameter in weather forecasting methods and a critical variable for predicting future 
weather patterns. An accurate temperature prediction system can assist individuals and organizations in preparing for 
activities heavily influenced by weather conditions. Therefore, developing a precise temperature prediction model requires 
a reliable and effective algorithm. In this study, the Long Short-Term Memory (LSTM) algorithm, a type of artificial neural 
network (Recurrent Neural Network - RNN), is implemented with time series data decomposition for variable input 
processing. LSTM is specifically designed to handle sequential data or time series data, such as weather data. Additionally, 
LSTM-GRU and LSTM-Conv1D models are utilized. The dataset used in this research comprises air temperature data provided 
by the Meteorology, Climatology, and Geophysics Agency (BMKG) in the DKI Jakarta region. Model evaluation is conducted 
using criteria for the smallest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Experiments show that the 
prediction system based on LSTM-GRU achieves the lowest MAE and RMSE values compared to LSTM and LSTM-Conv1D, 
across 10, 20, and 30-step predictions. It can be concluded that the LSTM-GRU algorithm provides the most accurate 
predictions compared to the LSTM and LSTM-Conv1D models for sequential temperature data, given sufficient data and a 
properly configured model. This is also graphically demonstrated by prediction results closely aligning with the actual data. 
 
Key words: time series; air temperature; prediction; deep learning; LSTM 

INTRODUCTION 

The phenomenon of global warming, which is associated with rising air temperatures, has attracted 

the attention of researchers in the field of data science. This increase in air temperature significantly affects 

climate change and other natural phenomena, such as rising sea levels, extreme weather changes, and 

global warming, which ultimately pose potential threats to human life (Zhang et al., 2023). Air temperature 

is a variable that shows conditions caused by activities that occur in the atmosphere and processes that 

occur on the earth's surface (Tran et al., 2024). Predicting the conditions and trends of air temperature is 

an important aspect of weather forecasting mechanisms, as human safety is highly influenced by natural 

conditions. Extreme changes in air temperature can also significantly impact the lives of plants and 

animals. An accurate air temperature prediction system is essential due to its effects on various sectors, 

including industry, agriculture, and energy (Reza et al., 2022). Additionally, an accurate temperature 
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prediction system supports energy efficiency efforts (Le et al., 2019a). Air temperature is also one of the 

key parameters in meteorological data analysis, such as in variables like streamflow, evaporation, and solar 

radiation (Qifu Wang et al., 2022). Therefore, an effective approach to air temperature prediction is vital 

and may play a critical role in mitigation efforts to address global warming and climate change (Li et al., 

2023a). 

A temperature prediction system has become essential, given its impacts across various sectors, 

including agriculture, energy, and disaster management. With advancements in research and technology, 

time series data analysis has been widely applied to various aspects, such as environmental ecology 

analysis and economic development. A precise temperature prediction model can greatly assist scientific 

tools in decision-making processes related to protecting human life from environmental and natural 

changes (Qifu Wang et al., 2022). As is characteristic of time series datasets, temperature variability is 

closely linked to other aspects of human life (Prabuddhi & Seneviratne, 2020). With the rise in human 

population and urbanization, the greenhouse effect continues to intensify. Extreme temperature changes 

have significant impacts on human life.     

With the expansion and development of research in the field of data science, various predictive 

models have been developed for different time series data. One reference (Le et al., 2019b) employs the 

Support Vector Machine (SVM) algorithm to predict temperature levels under specific conditions. In 

another study (Wang et al., 2024), the Backpropagation (BP) algorithm is used to predict air temperature 

in mining areas. However, these algorithms have several drawbacks that lead to suboptimal prediction 

models. When the dataset is large, the SVM algorithm requires more memory and time, while a large 

dataset can slow down the convergence rate of the BP algorithm. 

The Recurrent Neural Network (RNN) algorithm has seen increased use, particularly for temperature 

prediction, as it can maintain contextual information from current data. The Long Short-Term Memory 

(LSTM) algorithm is an advanced version of the RNN method. LSTM algorithms have been widely 

developed and utilized in various research related to predictive modeling. In one study (Kar et al., 2024), 

a fusion LSTM network method was implemented to predict temperature and humidity levels using a 

synchronous mechanism. Another study (Kumari et al., 2024) demonstrated a convolutional neural 

network combined with LSTM to predict sea surface temperature and salinity levels.  

This study designs an air temperature prediction model using different configurations of the 

Recurrent Neural Network (RNN) method, specifically one-dimensional convolution, Gate Recurrent Unit 

(GRU), and Long Short-Term Memory (LSTM) methods. The resulting model design effectively reduces the 

impact of irregular fluctuations in temperature data and enhances the accuracy of the prediction model. 

Ultimately, an optimal temperature level prediction model for the Jakarta area was achieved. 

 

METHODS 

The data used in this study consists of air temperature readings recorded every 10 minutes, sourced 

from the Meteorology and Geophysics Agency for the Jakarta area. The time series period utilized for this 

research spans from January 2014 to January 2022. This dataset comprises 420,225 temperature data 

points, with 90% allocated for training and validation data, while the remaining 10% is used for testing. The 

methods implemented in this research include LSTM, LSTM-Conv1D, and LSTM-GRU. Before applying these 

methods, the data undergoes a time series decomposition algorithm process. 
 

Decomposition Time Series Algorithm 

The time series decomposition method is an analytical technique used to break down data into several 

simpler constituent components. The goal is to understand long-term patterns, seasonal fluctuations, and 

random variables (noise). Decomposition helps in separating these elements, making them easier to 

analyze and predict (Li et al., 2023b). There are four main components of time series decomposition, namely 

rend, seasonal, cycle, and residual. The mechanism of time series data decomposition utilizes the Anti 

Leakage Least Square Spectral Analysis (ALLSSA) method, which effectively preserves information based on 

seasonal variation components. This algorithm adopts an additive model system. The trend component is 

represented by 𝑻𝑣, the seasonal component is indicated by the variable 𝑺𝒗, and the residual component is 
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denoted by the variable 𝑹𝒗. The time series function 𝑭 with data length 𝑛 can be defined by the following 

equation (1) : 

𝑭 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑛} … … … … … … … . . (1) 

The implementation process of the ALLSSA algorithm for time series data decomposition into trend, 

seasonal, and residual components is divided into the following eight steps: 

1. Define the window width size 𝑅, Then, determine the step size 𝛿, and set 𝑑 = 0 

2. Determine the fragments of the time series data:𝑓𝑡1+𝑑𝛿 , 𝑓𝑡2+𝑑𝛿 , … , 𝑓𝑡𝑅+𝑑𝛿 

3. Initialize the movement of each point 𝑙 = 3 + 𝑑𝛿 

4. In step 2, use the ALLSSA algorithm to decompose the time series fragment into trend, seasonal, 

and residual components, and update the data movement variable 𝑙 = 𝑙 + 1 

5. if 𝑙 < 𝑅 + 𝑑𝛿 < 𝑛, repeat step 4 

6. Store the square sum data for the remaining time series fragment components based on the 

lowest value of the movement variable, denoted as 𝑙𝑑 where 𝑑 = 𝑑 + 1 

7. If 𝑅 + 𝑑𝛿 < 𝑛, return to step 2 

8. Use the obtained movement value 𝑙𝑑 as input dan apply it to ALLSSA algorithm to  𝑻𝑣 , 𝑺𝒗, 𝑹𝒗 

 

Long Short-Term Memory (LSTM) 

The performance of a traditional neural network-based prediction model is greatly influenced by 

input data that contains contextually distributed random information. The mechanism of the RNN 

algorithm provides feedback where the output data produced becomes the input data for the system, 

effectively addressing issues present in traditional neural networks (T. T. K. Tran et al., 2021). However, 

several derivative operations implemented on the input data array for the RNN layer can lead to the 

problem of vanishing gradient values. The LSTM neural network architecture improved the performance of 

RNNs by incorporating three gate structures: the forget gate, the input gate, and the output gate. The 

addition of these gates is highly effective in mitigating the issues of vanishing gradient values or the 

extreme increase of gradient values. The structure of LSTM is illustrated in the following Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Structure of the LSTM Network (Tran et al., 2021) 

The parameters in the diagram of the LSTM network structure are applied through the following four 

stages: updating the forget gate, input gate, cell state, and output gate. The variables used are 𝒇𝒕, 𝒊𝒕, 𝒐𝒕 

which represent the forget gate, input gate, and output gate, respectively. The variables  𝑾 and 𝑩 

correspond to the weight coefficients and biases. ℎ𝑡−1 represents the hidden state at time 𝑡 − 1. 𝑥𝑡 denotes 

the input at time 𝑡. 𝑐𝑡 represents the cell state at that time, and 𝑐�̃� is the candidate value vector. The symbol 

𝜎 represents the activation function, specifically the sigmoid function.  

The function to update the forget gate is given by the following equation 2: 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) … … … … … … … … … (2) 

The function to update the input gate is represented in the following equation 3: 

𝑓𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) … … … … … … … … … . (3) 

The function for updating the cell state is performed using equations 4 and 5: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) … … … … … … … . . (4) 

𝑐𝑡 =  𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡 … … … … … … … ….   … … … (5) 

For the function to update the output gate, equations (6) and (7) are used: 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) … … … … . … … … … . . (6) 

ℎ𝑡 =  𝑜𝑡 ∙ tanh 𝑐𝑡………………………………..……………..(7) 

 

The limitation of a single LSTM structure is that it can learn the pre-order characteristics of a data 

component arrangement but cannot combine the characteristics of post-order data. Bi-directional LSTM 

(Bi-LSTM) implements an additional training mechanism by transforming the input data twice and 

recording information from both the forward and backward processes. This mechanism consists of two 

different LSTM network configurations on the hidden layer, with the output positions placed in opposite 

directions, as illustrated in the following Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Structure of the Bi – LSTM Network (Qifu Wang et al., 2022) 

 

LSTM-Conv1D Model 

LSTM method and Conv1D (Convolutional 1D) are two types of algorithms commonly used for 

processing time series data. Each model serves a different function but is often combined to produce an 

accurate prediction model. LSTM Conv1D is a spatial-temporal network designed to predict sequences 

from time series data (Cao et al., 2023). Conv1D is a type of Convolutional Neural Network (CNN) 

implemented in a one-dimensional format, making it well-suited for handling time series data characterized 

by sequential data. In the Conv1D algorithm, the convolutional filter moves along one dimension to identify 

patterns within the dataset, as illustrated in the following Figure 3 (Farooq et al., 2023). 

 

 

 

 

 

 

 

 

 

Figure 3. 1D Convolution operation on dataset (Farooq et al., 2023) 
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Each 1D convolutional kernel filter acts as a pattern detector within a dataset. The purpose of the 

convolution process is to capture important information related to the dynamics of the time series data. 

This convolution mechanism allows for any spike analysis in value within the data array. The architecture of 

the LSTM Conv1D algorithm consists of three layers, as illustrated in Figures 4 and 5. The first layer is the 

input layer, a part of the network that receives time series data in a one-dimensional format. The Conv1D-

LSTM layer is responsible for performing convolution and clustering on the dataset. The output from this 

layer produces two parameters: 𝑋𝑂→𝐷 which maps origin data to destination data, and 𝑋𝐷→𝑂 which 

represents the clustering of destination data mapped back to origin data. In this layer, the two-graph 

convolutional network (TGCN) method is implemented to obtain relevance between samples in the dataset 

(V. Tran et al., 2024). The final layer employs a multi-layer perceptron (MLP) algorithm to process spatial 

information from the data (Sharma et al., 2023).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The overall framework of LSTM – Conv1D (Sharma et al., 2023) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The Architecture of TGCN (Sharma et al., 2023) 

LSTM-Gate Recurrent Unit (GRU) 

GRU (Gated Recurrent Unit) is a simplified configuration of the LSTM network, designed to maintain the 

key characteristics of handling long-term dependencies in time series data while streamlining its structure. 

Unlike the LSTM configuration, which employs three types of gates, the GRU topology utilizes only two 

main gates. The configuration of the GRU topology is illustrated in Figure 5 (Sri Sakthi et al., 2023).  

 
 

 

 

 

 

 

 

 

 

Figure 6. The topology of GRU (Sri Sakthi et al., 2023) 

sig 
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The main components of the GRU are as follows: 

• Update Gate: This layer of the GRU determines the amount of past information to be used in 

generating new variables and information. The update gate parameter is updated using the following 

equation (8) (Farooq et al., 2023): 

𝑧𝑡 = 𝜎(𝑊2 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) … … … … … … . (8) 

where 𝑧𝑡 represents the value of the update gate generated, 𝜎 a is the sigmoid activation function that 

outputs a range between 0 and 1, 𝑊𝑧 is the weight matrix that defines the relationship between the 

hidden state ℎ𝑡−1 and the input 𝑥𝑡, and 𝑏𝑧 is the bias value, which is a vector added to the result of the 

multiplication between the matrix 𝑊2 and the combination variables ℎ𝑡−1 and 𝑥𝑡. 

• Reset gate: This part of the GRU layer determines how much of the previous information should be 

discarded before generating new memory variables. If the output variable of the reset gate approaches 

0, it indicates that the GRU has completely removed that data. The mechanism of the reset gate is 

represented by the following equation (9) (Kumari et al., 2024): 

• 𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) … … … … … . . (9) 

Where 𝑟𝑡 is the value of the reset gate coefficient produced, 𝜎 is the sigmoid activation function that 

produces values between 0 and 1, 𝑊𝑟 is the weight matrix defining the relationship between the hidden 

state ℎ𝑡−1 and the input 𝑥𝑡 at the reset gate layer, and 𝑏𝑟 is the bias value, which is a vector added to the 

result of the multiplication between the matrix 𝑊𝑟 and the combination variables between ℎ𝑡−1 and 𝑥𝑡. In 

this research, the structure of the GRU is combined with the LSTM network, and an analysis is conducted 

to achieve an architecture that is simpler, faster to train, and lighter in computational load. 

The construction of the temperature prediction model in this study consists of three parts: the input 

layer, the hidden layer, and the output layer. The initial stage of the model design process involves dividing 

the dataset into two parts: training data and testing data, with a ratio of 9:1. The input layer is divided into 

four sections based on the trend, seasonal, residual, and original data variables. This data is processed using 

the LSTM network to obtain prediction results (Kar et al., 2024).  

In the hidden layer, three model parameter tests are conducted using LSTM-Conv1D, LSTM-GRU, 

and LSTM. The variables from these three predictive parameter models are analyzed and compared to find 

the most optimal results. The predicted values of each component are outputs from a fully connected layer, 

and the results are then summed to obtain the initial prediction value. Based on the combination of these 

two predicted values, the data is compressed to arrive at the final prediction value obtained through the 

fully connected layer. The output layer provides the predicted data for the entire time series for 

temperature. The overall prediction model is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The temperature prediction model 
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The loss function parameter used in the model for this research is implemented using the Mean 

Squared Error (MSE) function, which is represented by the following equation 10 (Linzi, 2023): 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − ℎ𝑖)

2𝑛
𝑖=1

𝑛
… … … … … … … … … … (10) 

Where 𝑦𝑖 represents the original values, ℎ𝑖 is the predicted value, and n is the data length. Mean Squared 

Error (MSE) is used to measure how well a predictive model estimates the actual values in the data, which 

in this case refers to the training data. In this research, the number of cells is set to 0.5, and the discard rate 

is set to 0.2. The activation function used is tanh. The learning rate is set at 0.0001. An Adam optimizer is 

utilized for the testing phase, which can converge the values effectively (Audace et al., 2022). The prediction 

model described in this study is implemented on Google Collaboratory's cloud computing platform, 

utilizing Python 3.7 and Keras 2.3.1 software.  

The next step is model’s performance evaluation. It is used to evaluate the prediction results on testing 

data. Testing data is a separate subset of the dataset that is not used during the model training phase, 

ensuring an unbiased assessment of the model's performance. To objectively analyze the performance of 

the temperature prediction model used in this research, the parameters Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE) (Nizar et al., 2021) are employed as performance metrics, which are 

represented by the following equations (11) and (12): 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − ℎ𝑖)

2𝑛
𝑖=1

𝑛
… … … … … … … . (11) 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − ℎ𝑖|𝑛

𝑖=1

𝑛
… … … … … … … … … . . (12) 

Where 𝑦𝑖 represents the original value, and ℎ𝑖 is the prediction value,  n is the time series data length 

 

RESULT AND DISCUSSION 

The comparison of the models used includes two stages. The first stage consists of selecting the 

optimal step size from the model based on experimental results. The second stage involves testing the 

predicted values generated by three models: LSTM, GRU-LSTM, and Conv1D-LSTM. The step size parameter 

is adjusted according to the characteristics of the dataset sourced from the temperature data provided by 

the Meteorology and Geophysics Agency (BMKG) for the Jakarta area. The dataset comprises 420,255 

samples collected at 10-minute intervals. The sample data is illustrated in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The temperature dataset 

The configuration of each model used is performed independently. For the LSTM model parameter 

configuration, 5 input layers and 1 output layer are utilized, with 64 memory cells. The memory cell serves 

to manage the complexity and learning capacity of each layer. Additionally, a dense layer parameter of 8 is 

used, consisting of 8 neurons with a specified activation function of ReLU (Rectifier Linear Unit). There is 
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also an additional 1-layer density added to the LSTM network with a linear activation function, which is 

responsible for producing the predicted temperature values. The model configuration is shown in Table 1. 

Table 1. LSTM Parameter Model 

 

 

 

 

 

 

 

In the LSTM – Conv1D model, a configuration of 5 input layers and 1 output layer is utilized, along 

with a one-dimensional CNN convolution parameter used to process the time series data. This convolution 

parameter consists of a moving window kernel with 64 convolutional layers, a kernel size of 4, and employs 

the ReLU activation function. Additionally, a flatten layer is used in this model to simplify the output 

dimensions from the convolutional layer into a single dimension. The configuration of the LSTM – Conv1D 

model is shown in Table 2. 

Table 2. LSTM – Conv1D Parameter Model 

 

 

 

 

 

 

 

 

For the LSTM – GRU model, a configuration of 5 input layers and 1 output layer is utilized. The GRU 

layer is designed with a hidden layer size of 64 units. This GRU layer plays a crucial role in handling 

sequential data by adapting to changing data patterns. The configuration parameters for the LSTM – GRU 

model are shown in Table 3. 

Table 3. LSTM – GRU Parameter Model 

 

 

 

 

 

 

 

 

Several models were analyzed using specific segments of the temperature dataset recorded every 

10 minutes to assess the generated predictions. For this testing, 100 sample data points were selected to 

represent the entire dataset. Table 4 presents a comparison of RMSE values. The RMSE values indicate that 

models combined with a GRU layer exhibit significantly higher predictive accuracy compared to models 

without a GRU layer. This suggests that the combination of suitable algorithm functions can effectively 

enhance prediction accuracy. Additionally, as observed in Table 4, the accuracy of the LSTM – GRU model 

slightly varies with different step sizes. The best predictive accuracy for both the LSTM – GRU model and 

the models presented in the study was achieved with a step size of 30. 

Tabel 4. RMSE Value for Three Models with Different Step Sizes 

MODEL 10 20 30 

LSTM 2.6753 2.3265 2.4736 

LSTM Conv1D 2.0455 2.3382 2.4059 

LSTM GRU 0.6563 0.4735 0.4194 
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The Mean Absolute Error (MAE) for the four models with varying step sizes is presented in Table 5. 

According to the data in Table 5, the MAE for each model changes only slightly when the step sizes are set 

to 20 and 30. Notably, the LSTM-GRU model demonstrates the best MAE performance when the step size 

is 30. This finding reinforces the effectiveness of the LSTM-GRU configuration in providing accurate 

temperature predictions under optimal conditions, as indicated by both the RMSE and MAE metrics. This 

analysis shows the importance of selecting the appropriate step size, as it significantly impacts the model's 

predictive accuracy. The consistent performance of the LSTM-GRU model across different metrics suggests 

that it is a robust choice for time series forecasting in temperature data. 

Table 5. MAE Value for Three Models with Different Step Sizes 

MODEL 10 20 30 

LSTM 3.0914 2.8122 2.3667 

LSTM Conv1D 2.1799 2.9219 2.3436 

LSTM GRU 0.7087 0.4996 0.3336 
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(c) 

 

Figure 9. (a) Prediction result for the LSTM; (b) LSTM – Conv1D; and (c) LSTM – GRU models  

        

To accurately illustrate the prediction effects of each model, a test dataset spanning 100 days was 

randomly selected for comparison, as shown in Figure 9. In this figure, the orange markers represent the 

actual data, while the blue markers indicate the predicted values. From Figure 9, it is evident that the LSTM 

and LSTM-Conv1D models yielded less optimal predictions, displaying noticeable discrepancies between 

the actual and predicted values. The error margins between these two models and the actual data are 

significant and visible. 

In contrast, the LSTM-GRU model demonstrates superior predictive performance, with a smaller error 

margin between the predicted and actual values. Furthermore, the LSTM-GRU model accurately captures 

relevant details more effectively than the other models. This outcome suggests that the LSTM-GRU 

configuration not only provides practicality but also enhances the effectiveness of predictions to the 
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underlying data characteristics. Overall, the findings emphasize the LSTM-GRU model's ability to deliver 

more reliable temperature forecasts compared to its counterparts. 

The LSTM model is widely used in weather modeling, particularly for air temperature prediction. 

According to research findings, the three LSTM models used were able to demonstrate strong performance 

with low RMSE and MAE values. Even when the prediction steps were increased, both RMSE and MAE values 

remained relatively constant. This indicates that these three models are robust due to the advantages of 

LSTM, which can overcome the vanishing gradient problem often encountered in traditional neural network 

modeling for long sequential data.   

 

CONCLUSIONS  

In this study, we propose a temperature prediction model based on time series decomposition and 

several artificial neural network models, including LSTM, LSTM-Conv1D, and LSTM-GRU. The models 

developed in this research effectively mitigate the impact of random fluctuations in the predicted 

temperature data and provide accurate temperature predictions every 10 minutes for the DKI Jakarta area. 

The results of the tests conducted in this research indicate that the LSTM network model, when 

equipped with time decomposition, exhibits a higher prediction accuracy compared to the LSTM model 

without time series decomposition methods. In comparison to the LSTM and LSTM-Conv1D models, the 

predicted data from the LSTM-GRU model, combined with the time series decomposition algorithm, 

produces predictions that are much closer to the actual curve presented, along with better anti-sensitivity 

results as indicated by various evaluation metrics. These findings highlight the effectiveness of the LSTM-

GRU model in capturing the intricate dynamics of temperature variations, ultimately offering a robust tool 

for forecasting temperature changes in urban environments like Jakarta. 
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