PERBANDINGAN KINERJA ALGORITMA APRIORI DAN EQUIVALENCE CLASS TRANSFORMATION (ECLAT) DALAM MENEMUKAN POLA PEMBELIAN PADA DATA TRANSAKSI MINIMARKET
Abstract
This study compares the performance of the Apriori and ECLAT algorithms in analyzing sales transaction data from a minimarket. The research focuses on examining both algorithms' efficiency in terms of execution time and memory usage when identifying frequent itemsets and generating association rules. Given the limited variety of products sold in a minimarket, a lower minimum support (0.001) and minimum confidence (0.005) were applied to ensure meaningful results, as higher thresholds resulted in no significant findings. The first test evaluated the time required to find frequent itemsets, revealing that ECLAT consistently outperformed Apriori with an average execution time of 0.71634 seconds compared to Apriori's 4.88256 seconds. The second test assessed the time taken to generate association rules, where ECLAT again showed slightly better performance, averaging 0.01352 seconds versus Apriori's 0.01618 seconds. Memory usage tests showed that ECLAT was more efficient, using an average of 0.12436 MB to find frequent itemsets and 0.01052 MB to generate association rules, compared to Apriori's 0.1385 MB and 0.01136 MB, respectively. The results indicate that the ECLAT algorithm is generally more effective for analyzing sales transactions in a minimarket environment, particularly when handling large datasets and when computational efficiency is critical. The findings provide valuable insights for selecting the appropriate algorithm to optimize marketing strategies and inventory management in retail settings.
Keywords: Market Basket Analysis, Apriori, Assocation Rule, ECLATFull Text:
PDFReferences
M. Szymkowiak, T. Klimanek, dan T. Józefowski, “Applying Market Basket Analysis to Official Statistical Data,” 2018. doi: 10.15611/eada.2018.1.03.
M.-B. Belaid, C. Bessière, dan N. Lazaar, “Constraint Programming for Association Rules,” 2019. doi: 10.1137/1.9781611975673.15.
T. Arreeras, M. Arimura, T. Asada, dan S. Arreeras, “Association Rule Mining Tourist-Attractive Destinations for the Sustainable Development of a Large Tourism Area in Hokkaido Using Wi-Fi Tracking Data,” 2019. doi: 10.3390/su11143967.
M. Shaikh, P. D. McNicholas, M.-L. Antonie, dan B. Murphy, “Standardizing Interestingness Measures for Association Rules,” 2018. doi: 10.1002/sam.11394.
R. Yanti, J. N. Elquthb, I. P. Rachmadewi, dan Q. Qurtubi, “Bibliometric Study of Association Rule-Market Basket Analysis,” 2024. doi: 10.11591/ijaas.v13.i2.pp282-290.
Ach. N. A. Wahid dan D. Avianto, “Penerapan Association Rule Terhadap Diagnosa Penyakit Menggunakan Algoritma Frequent Pattern Growth.” Diakses: 12 November 2024. [Daring]. Tersedia pada: https://journal.trunojoyo.ac.id/nero/article/view/22566
Moch. Syahrir dan L. Z. A. Mardedi, “Determination of the Best Rule-Based Analysis Results From the Comparison of the Fp-Growth, Apriori, and TPQ-Apriori Algorithms for Recommendation Systems,” 2023. doi: 10.31940/matrix.v13i2.52-67.
K. Chain, “Applications of Data Mining Algorithms for Network Security,” 2019. doi: 10.20944/preprints201906.0144.v1.
A. Farouk, F. F. M. Ghaleb, M. Abdel-Rahman, dan W. Zakaria, “A New Algorithm for Mining Correct Sequences of a Specific Behaviour for Smart Monitoring Daily Life Activities,” 2022. doi: 10.21608/ejaps.2022.168315.1045.
Y. Chen, R. Wang, B. Zeng, dan W. S. A. Griffith, “Temporal Association Rules Discovery Algorithm Based on Improved Index Tree,” 2021. doi: 10.2478/amns.2021.1.00016.
B. Bouaita, A. Beghriche, A. Kout, dan A. Moussaoui, “A New Approach for Optimizing the Extraction of Association Rules,” 2023. doi: 10.48084/etasr.5722.
A. L. S. Saabith, E. Sundararajan, dan A. A. Bakar, “A Parallel Apriori-Transaction Reduction Algorithm Using Hadoop-Mapreduce in Cloud,” 2018. doi: 10.9734/ajrcos/2018/v1i124719.
J. A. Jusoh, M. Man, dan W. A. W. A. Bakar, “Performance of IF-Postdiffset and R-Eclat Variants in Large Dataset,” 2018. doi: 10.14419/ijet.v7i4.1.28241.
P. Singh, S. Singh, P. Mishra, dan R. Garg, “RDD-Eclat: Approaches to Parallelize Eclat Algorithm on Spark RDD Framework (Extended Version),” 2021. doi: 10.21203/rs.3.rs-1079576/v1.
R. Wahyuningsih, A. Suharsono, dan N. Iriawan, “Comparison of Market Basket Analysis Method Using Apriori Algorithm, Frequent Pattern Growth (Fp- Growth) and Equivalence Class Transformation (Eclat) (Case Study: Supermarket ‘X’ Transaction Data for 2021),” 2023. doi: 10.33086/bfj.v8i2.5226.
S. Bhaskar, “Association Rule Development for Market Basket Dataset,” 2018. doi: 10.5120/ijca2018917310.
L. Hamdad dan K. Benatchba, “Association Rules Mining,” 2021. doi: 10.1007/s42979-021-00819-x.
S. Bagui dan P. C. Dhar, “Positive and Negative Association Rule Mining in Hadoop’s MapReduce Environment,” 2019. doi: 10.1186/s40537-019-0238-8.
K. D. Fernanda, A. P. Widodo, dan J. Lemantara, “Analysis and Implementation of the Apriori Algorithm for Strategies to Increase Sales at Sakinah Mart,” 2023. doi: 10.30595/juita.v11i2.17341.
M. A. Zidan, N. R. Ismayanti, dan N. W. W. Sari, “Application of Web-Based Apriori Algorithm for Drug Inventory at Khairi Farma Pharmacy,” 2022. doi: 10.47002/mst.v2i2.365.
F. Ren, Z. Pei, dan K. Wu, “Selection of Satisfied Association Rules via Aggregation of Linguistic Satisfied Degrees,” 2019. doi: 10.1109/access.2019.2926735.
M. Man, J. A. Jusoh, S. I. A. Saany, W. A. W. A. Bakar, dan M. H. Ibrahim, “Analysis Study on R-Eclat Algorithm in Infrequent Itemsets Mining,” 2019. doi: 10.11591/ijece.v9i6.pp5446-5453.
W. Lestari, H. Hasanah, dan R. Susanto, “Implementation of Association Rules Using Apripori Algorithm for Angkringan,” 2023. doi: 10.47701/icohetech.v4i1.3425.
J. P. Ortiz, L. Rodríguez-Mazahua, J. Mejía, I. Machorro-Cano, G. Alor-Hernández, dan U. Juárez-Martínez, “Towards Association Rule-Based Item Selection Strategy in Computerized Adaptive Testing,” 2020. doi: 10.16967/23898186.666.
DOI: https://doi.org/10.21107/nero.v9i2.28055
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 I Putu Susila Handika