Optimasi model machine learning untuk prediksi inhibitor korosi berbasis augmentasi dataset senyawa n-heterocyclic menggunakan KDE

Rizky Syah Gumelar, Muhamad Akrom, Gustina Alfa Trisnapradika

Abstract


This study aims to optimize a machine learning model to predict the corrosion inhibitor effectiveness of N-Heterocyclic compounds.  The main challenge in this modelling is the limited dataset due to the high cost and time required to collect experimental data. To overcome this problem, this research utilizes Kernel Density Estimation (KDE) as a data augmentation technique, generating virtual samples that improve dataset diversity and model predictive performance. The developed dataset includes 11 relevant chemical features such as HOMO, LUMO, and Gap Energy. Linear (MLR, Ridge, Lasso, and ElasticNet) and non-linear (KNR, Random Forest, Gradient Boosting, Adaboost, XGBoost) machine learning models were evaluated based on Root Mean Squared Error (RMSE) and coefficient of determination (R²). The results show that data augmentation using KDE improves prediction accuracy and stability, especially in non-linear models like Random Forest and XGBoost. The application of KDE proved effective in improving the performance of predictive models. It can be recommended as an augmentation method in similar studies that require additional data to improve prediction accuracy.

Keywords: Machine Learning, Kernel Density Estimator (KDE), Corrosion Inhibitor, Dataset


Full Text:

PDF

References


N. V. Putranto, M. Akrom, and G. A. Trinapradika, “Implementasi Fungsi Polinomial pada Algoritma Gradient Boosting Regressor: Studi Regresi pada Dataset Obat-Obatan Kadaluarsa Sebagai Material Antikorosi,” JTMI, vol. 9, no. 2, pp. 172-182, Dec. 2023, doi: https://doi.org/10.26905/jtmi.v9i2.11192

T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” npj Mater Degrad, vol. 7, no. 1, p. 18, Mar. 2023, doi: https://doi.org/10.1038/s41529-023-00336-7

M. Akrom, “DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion Inhibitor,” Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, vol. 8, no. 1, pp. 42-48, Feb. 2022, doi: https://doi.org/10.30738/st.vol8.no1.a11775

S. Harsimran, K. Santosh, and K. Rakesh, “Overview Of Corrosion And Its Control: A Critical Review,” PES, vol. 3, no. 1, pp. 13-24, Mar. 2021, doi: https://doi.org/10.24874/PES03.01.002

M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Computational and Theoretical Chemistry, vol. 1229, p. 114307, 2023, doi: https://doi.org/10.1016/j.comptc.2023.114307.

N. Islami, M. Ihsan, T. Hafli, R. Putra, and M. Muhammad, “Pengaruh Lingkungan Korosif dan Beban Mekanis Terhadap Perilaku Korosi pada Material Stainless Steel AISI-304,” MJMST, vol. 5, no. 2, p. 28, Oct. 2021, doi: https://doi.org/10.29103/mjmst.v5i2.6025

W. Wibowo and M. N. Ilman, “Studi Eksperimental Pengendalian Korosi pada Aluminium 2024-T3 di Lingkungan Air Laut Melalui Penambahan Inhibitor Kalium Kromat (K2CrO4),” Jurnal Rekayasa Proses, vol. 5, no. 1, 2011, doi: https://doi.org/10.22146/jrekpros.1893.

G. Priyotomo, S.T., M.Si., H. Sumada Sitepu, and Y. Dwiyanti, “Pengaruh Penambahan Konsentrasi Inhibitor Ekstrak Daun Talas Terhadap Laju Korosi Pada Baja Api 5L X-52 Dengan Media Korosif H2SO4 0,5 M,” j. widyariset, vol. 5, no. 1, p. 30, Mar. 2020, doi: https://doi.org/10.14203/widyariset.5.1.2019.30-36

A. Miralrio and A. Espinoza Vázquez, “Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review,” Processes, vol. 8, no. 8, p. 942, Aug. 2020, doi: https://doi.org/10.3390/pr8080942

A. Hu et al., “A new framework for predicting tensile stress of natural rubber based on data augmentation and molecular dynamics simulation data,” J Mater Inf, vol. 4, no. 3, Aug. 2024, doi: https://doi.org/10.20517/jmi.2024.11

Q.-X. Zhu, Z.-H. Wang, Y.-L. He, and Y. Xu, “A Monte Carlo and Kernel Density Estimation based virtual sample generation method for small data modeling problem,” in 2020 Chinese Automation Congress (CAC), Shanghai, China: IEEE, Nov. 2020, pp. 1123-1128. doi: https://doi.org/10.1109/CAC51589.2020.9326486

L. Zhang et al., “Probability prediction of short-term user-level load based on random forest and kernel density estimation,” Energy Reports, vol. 8, pp. 1130-1138, Aug. 2022, doi: https://doi.org/10.1016/j.egyr.2022.02.256

N. A. Matar, W. Matar, and T. AlMalahmeh, “Predictive Model for Students Admission Uncertainty Using Naïve Bayes Classifier and Kernel Density Estimation (KDE),” Int. J. Emerg. Technol. Learn., vol. 17, no. 08, pp. 75-96, Apr. 2022, doi: https://doi.org/10.3991/ijet.v17i08.29827

F. Novianti and N. Ulinnuha, “Seleksi Fitur Algoritma Genetika Dalam Klasifikasi Data Rekam Medis PCOS Menggunakan SVM,” vol. 9, no. 1, 2024, doi: https://doi.org/10.21107/nero.v9i1.25399

C. A. P. Sumarjono, M. Akrom, and G. A. Trisnapradika, “Perbandingan Model Machine Learning Terbaik untuk Memprediksi Kemampuan Penghambatan Korosi oleh Senyawa Benzimidazole,” tc, vol. 22, no. 4, pp. 973-980, Nov. 2023, doi: https://doi.org/10.33633/tc.v22i4.9201

M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results in Chemistry, vol. 6, p. 101126, Dec. 2023, doi: https://doi.org/10.1016/j.rechem.2023.101126

M. Akrom and T. Sutojo, “Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin,” Eksergi, vol. 20, no. 2, p. 107, Jul. 2023, doi: https://doi.org/10.31315/e.v20i2.9864

S. Budi et al., “Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as Corrosion Inhibitors,” KEG, Mar. 2024, doi:. https://doi.org/10.18502/keg.v6i1.15351

M. Akrom, “Green Corrosion Inhibitors for Iron Alloys: A Comprehensive Review of Integrating Data-Driven Forecasting, Density Functional Theory Simulations, and Experimental Investigation,” JIMAT, vol. 1, no. 1, pp. 22-37, Apr. 2024, doi: https://doi.org/10.62411/jimat.v1i1.10495

W. Herowati et al., “Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine Compounds: A Comparative Study of Linear and Non-linear Algorithms,” KnE Engineering, vol. 6, no. 1, pp. 68-77, Mar. 2024, doi: https://doi.org/10.18502/keg.v6i1.15350




DOI: https://doi.org/10.21107/nero.v%25vi%25i.27945

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Rizky Syah Gumelar, Muhamad Akrom, Gustina Alfa Trisnapradika