IMPLEMENTASI QSVM DALAM KLASIFIKASI BINER PADA KASUS KANKER PROSTAT

Nur Amalina Rahmaputri Hilmy, Muhamad Akrom

Abstract


Quantum Machine Learning (QML) is increasingly attracting attention as a potential solution to improve computational performance, especially in handling complex and big data-driven classification tasks. In this study, the Quantum Support Vector Machine (QSVM) algorithm is applied to prostate cancer classification, with the results compared to the classical Support Vector Machine (SVM) model. QSVM shows superiority in accuracy, reaching 0.93, compared to the classical SVM which has an accuracy of 0.91. In addition, QSVM produces precision, recall, and F1-score values of 0.83, 0.95, and 0.88, respectively, higher than the precision of 0.82, recall of 0.93, and F1-score of 0.87 of the classical SVM. These findings indicate that QSVM is more effective in handling high-dimensional data and complex classification, thus demonstrating the great potential of QML in medical applications, especially in cancer classification and biomarker discovery.

Keywords: Quantum Machine Learning, Quantum Support Vector Machine, Klasifikasi, Kanker Prostat

Full Text:

PDF

References


J. Preskill, Quantum computing in the NISQ era and beyond, Quantum. 2, 79 (2018),

https://doi.org/10.22331/q-2018-08-06-79.

J. Preskill, Lecture notes for physics 229: quantum information and computation. California Inst Technol, 16(1), 1–8 (1998).

S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman, dan R. Buyya, “Quantum computing: a taxonomy, systematic review and future directions,” Softw. Pract. Exp., vol. 52, no. 1, pp. 66–114, 2022.

M. I. Jordan dan T. M. Mitchell, “Machine learning: trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

I. Sarker, “Machine learning: algorithms, real-world applications and research directions,” SN Comput. Sci., vol. 2, no. 3, p. 160, 2021.

T. Wuest, D. Weimer, C. Irgens, dan K.-D. Thoben, “Machine learning in manufacturing: advantages, challenges, and applications,” Prod. Manuf. Res., vol. 4, no. 1, pp. 23–45, 2016.

P. Mironowicz, A. Mandarino, A. Yilmaz, dan T. Ankenbrand, “Applications of quantum machine learning for quantitative finance,” arXiv preprint arXiv:240510119, 2024.

D. Maheshwari, B. Garcia-Zapirain, dan D. Sierra-Sosa, “Quantum machine learning applications in the biomedical domain: a systematic review,” IEEE Access, vol. 29, no. 10, pp. 80463–80484, 2022.

U. Ullah dan B. Garcia-Zapirain, “Quantum machine learning revolution in healthcare: a systematic review of emerging perspectives and applications,” IEEE Access, vol. 12, pp. 11423–11450, 2024.

D. Maheshwari, U. Ullah, P. A. O. Marulanda, A. G.-O. Jurado, I. D. Gonzalez, J. M. O. Merodio, dan B. Garcia-Zapirain, “Quantum machine learning applied to electronic healthcare records for ischemic heart disease classification,” Hum.-Cent. Comput. Inf. Sci., vol. 13, no. 6, 2023.

P. Rebentrost, M. Mohseni, dan S. Lloyd, “Quantum support vector machine for big data classification,” Phys. Rev. Lett., vol. 113, no. 13, p. 130503, 2014.

V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, dan J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.

S. Park, D. K. Park, dan J. K. Rhee, “Variational quantum approximate support vector machine with inference transfer,” Sci. Rep., vol. 13, no. 1, p. 3288, 2023.

D. Willsch, M. Willsch, H. De Raedt, dan K. Michielsen, “Support vector machines on the D-Wave quantum annealer,” Comput. Phys. Commun., vol. 248, p. 107006, 2020.

X. Vasques, H. Paik, dan L. Cif, “Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification,” Sci. Rep., vol. 13, no. 1, p. 11541, 2023.

R. D. M. Simoes, P. Huber, N. Meier, N. Smailov, R. M. Füchslin, dan K. Stockinger, “Experimental evaluation of quantum machine learning algorithms,” IEEE Access, vol. 11, pp. 6197–6208, 2023.

D. Maheshwari, D. Sierra-Sosa, dan B. Garcia-Zapirain, “Variational quantum classifier for binary classification: real vs synthetic dataset,” IEEE Access, vol. 10, pp. 3705–3715, 2021.

F. Novianti dan N. Ulinnuha, “Seleksi fitur algoritma genetika dalam klasifikasi data rekam medis PCOS menggunakan SVM,” Jurnal Ilmiah NERO, vol. 9, no. 1, 2024.

K. A. Tychola, T. Kalampokas, dan G. A. Papakostas, “Quantum machine learning—an overview,” Electronics, vol. 12, no. 11, p. 2379, 2023.

M. Akrom, S. Rustad, T. Sutojo, H. K. Dipojono, R. Maezono, dan M. Solomon, “Quantum machine learning for corrosion resistance in stainless steel,” Mater. Today Quantum, vol. 3, p. 100013, 2024, https://doi.org/10.1016/j.mtquan.2024.100013.

A. Sagingalieva, M. Kordzanganeh, N. Kenbayev, D. Kosichkina, T. Tomashuk, dan A. Melnikov, “Hybrid Quantum Neural Network for Drug Response Prediction,” Cancers (Basel), vol. 15, no. 10, May 2023. doi: 10.3390/cancers15102705.

N. V. Chawla, K. W. Bowyer, L. O. Hall, dan W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.

M. Akrom, S. Rustad, dan H. K. Dipojono, “Development of Quantum Machine Learning to Evaluate the Corrosion Inhibition Capability of Pyrimidine Compounds,” Mater. Today Commun., p. 108758, Mar. 2024. doi: 10.1016/J.MTCOMM.2024.108758.

M. Akrom, S. Rustad, dan H. K. Dipojono, “Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds,” Mater. Today Quantum, vol. 2, p. 100007, Jun. 2024. doi: 10.1016/j.mtquan.2024.100007.

M. Akrom, S. Rustad, H. K. Dipojono, dan R. Maezono, “A comprehensive approach utilizing quantum machine learning in the study of corrosion inhibition on quinoxaline compounds,” Artif. Intell. Chem., vol. 2, no. 2, p. 100073, 2024, https://doi.org/10.1016/j.aichem.2024.100073.

M. Akrom, “Quantum Support Vector Machine for Classification Task: A Review,” J. Mult. Scale Mater. Infor., vol. 1, no. 2, pp. 1–8, 2024, https://doi.org/10.62411/jimat.v1i2.10965.




DOI: https://doi.org/10.21107/nero.v9i2.27781

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nur Amalina Rahmaputri Hilmy, Muhamad Akrom