PENENTUAN UKURAN BATCH OPTIMAL UNTUK PELATIHAN YOLOV8 DALAM PENDETEKSIAN OBJEK PADA KENDARAAN OTONOM
Abstract
This study aims to determine the optimal batch size in training the YOLOv8 model for object detection in autonomous vehicles. With the increasing need for accurate and efficient object detection technology, this study explores the effect of batch size variation on the performance of the YOLOv8 model. The dataset used in this study is a traffic simulation dataset from CARLA, obtained from the Roboflow universe, consisting of 1719 images divided into training, validation, and testing data. The research methodology includes data collection, pre-processing, and data analysis using the YOLOv8 technique with different hyperparameter settings. The results showed that increasing the number of epochs and batch size contributed to the increase in the mean Average Precision (mAP) value of the model. The best training scheme was identified with the highest mAP value of 98.2%, using 100 epochs, batch size 32, and image resolution 640x640. These findings provide important insights for further development in object detection technology, as well as provide guidance for researchers who want to optimize training parameters for object detection models using YOLOv8 in the context of autonomous vehicles. This research is expected to serve as a reference for future studies in this field.
Kata kunci: YOLOv8, object detection, autonomous vehicle, optimal batch size, CARLA dataset, mean Average Precision (mAP), hyperparameters, model trainingFull Text:
PDFReferences
R. Steven Immanuel Sihombing, W. Abadi Harahap, and W. Kurnia Rahman, “Implementasi Yolo V8 Untuk Mendeteksi Mata Uang Rupiah Emisi Tahun 2022 Ber-Output Audio,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 5900–5905, 2024, doi: 10.36040/jati.v8i4.10099.
M. Alqarqaz, M. Bani Younes, and R. Qaddoura, “An Object Classification Approach for Autonomous Vehicles Using Machine Learning Techniques,” World Electr. Veh. J., vol. 14, no. 2, pp. 1–17, 2023, doi: 10.3390/wevj14020041.
K. Salma and S. Hidayat, “Deteksi Antusiasme Siswa dengan Algoritma Yolov8 pada Proses Pembelajaran Daring,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 2, pp. 1611–1618, 2024, doi: 10.35870/jimik.v5i2.716.
M. S. Hawibowo, “Aplikasi Pengklasifikasi Kematangan Pepaya Menggunakan Metode CNN Berbasis Android,” Fak. Teknol. Ind. Univ. Islam Indones., 2024, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/50071
F. A. Hariz, I. N. Yulita, and I. Suryana, “Human Activity Recognition Berdasarkan Tangkapan Webcam Menggunakan Metode Convolutional Neural Network (CNN) Dengan Arsitektur MobileNet,” JITSI J. Ilm. Teknol. Sist. Inf., vol. 3, no. 4, pp. 103–115, 2022, doi: 10.30630/jitsi.3.4.97.
N. Andrade, T. Ribeiro, J. Coelho, G. Lopes, and A. F. Ribeiro, “Combining YOLO and Deep Reinforcement Learning for Autonomous Driving in Public Roadworks Scenarios,” Int. Conf. Agents Artif. Intell., vol. 3, no. Icaart, pp. 793–800, 2022, doi: 10.5220/0010913600003116.
D. Bogdoll, J. Imhof, T. Joseph, and J. M. Zöllner, “Hybrid Video Anomaly Detection for Anomalous Scenarios in Autonomous Driving,” arXiv, vol. 2, 2024, doi: https://doi.org/10.48550/arXiv.2406.06423.
G. I. Andaru, “Pengembangan Model Deteksi Untuk On-Shelf Availability Produk Menggunkan YOLOV8 Pada Aplikasi Bergerak,” Undergrad. Thesis ,progr. Stud. Inform. Fak. Teknol. Ind. Univ. Islam Indones., 2024, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/51069
Y. P. Iswoyo, R. Wulanningrum, and A. Bagus, “Identifikasi Jenis Burung Menggunakan Yolo8 Berbasis Web Streamlit,” INOTEK, Univ. Nusant. PGRI Kediri, vol. 8, pp. 8–15, 2024, doi: https://doi.org/10.29407/inotek.v8i1.4902.
D. Anggara, N. Suarna, and Y. Arie Wijaya, “Performance Comparison Analysis Of Optimizer Adam, SGD, and RMSPROP on The H5 Model,” J. Ilm. NERO, vol. 8, no. 1, p. 2023, 2023, [Online]. Available: https://www.kaggle.com/datasets/jonathanoheix/face-expression-recognition-dataset
A. D. Lestari, “Aplikasi Deteksi Hama dan Penyakit pada Buah Kakao Menggunakan YOLOv8 Berbasis Website,” Undergrad. Thesis, Progr. Stud. Inform. Fak. Tek. dan Inform. Univ. PGRI Semarang, 2024, vol. 15, no. 1, pp. 37–48, 2024, [Online]. Available: https://eprints3.upgris.ac.id/id/eprint/4337/1/Aldhita Dwi Lestari_20670133_Skripsi.pdf
M. F. Arif, A. Nurkholis, S. Laia, and P. Rosyani, “Deteksi Kendaraan Dengan Metode YOLO,” J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 2, no. 1, pp. 20–27, 2023, [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
R. Fajri and F. Fitria, “Pengembangan Real-Time Object Detection System pada Perangkat Single-Board Computer,” Pengemb. Real-Time Object Detect. Syst. padaPerangkat Single-Board Comput., vol. 4, no. 2, pp. 1154–1162, 2023, doi: 10.30865/klik.v4i2.1224.
N. M. HARIS, “Implementasi Algoritma YOLOv7 Pada Sistem Penghitung Benih Kelapa Sawit Secara Realtime,” Dep. Mat. Fak. Mat. dan Ilmu Pengetah. Alam Univ. Hasanuddin, no. 0, pp. 1–23, 2016.
J. Tang, C. Ye, X. Zhou, and L. Xu, “YOLO-Fusion and Internet of Things: Advancing object detection in smart transportation,” Alexandria Eng. J., vol. 107, no. August, pp. 1–12, 2024, doi: 10.1016/j.aej.2024.09.012.
S. Wei, Z. Sun, Z. Wang, F. Liao, Z. Li, and H. Mi, “An Efficient Data Augmentation Method for Automatic Modulation Recognition from Low-Data Imbalanced-Class Regime,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13053177.
R. Ramadhan and R. M. Falah, “Pengatur Kepadatan Traffic Light Berbasis Image Recognition,” Undergrad. Proj. Progr. Elektro, Tek. Ind. Fak. Teknol. Indones. Univ. Islam, no. 20524143, 2024, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/51616
İ. Özcan, Y. Altun, and C. Parlak, “Improving YOLO Detection Performance of Autonomous Vehicles in Adverse Weather Conditions Using Metaheuristic Algorithms,” Appl. Sci., vol. 14, no. 13, 2024, doi: 10.3390/app14135841.
E. U. Armin, A. Purnama Edra, F. I. Alifin, I. Sadidan, I. P. Sary, and U. Latifa, “Performa Model YOLOv8 untuk Deteksi Kondisi Mengantuk pada pengendara mobil,” BRAHMANA J. Penerapan Kecerdasan Buatan, vol. 5, no. 1, pp. 67–76, 2023, [Online]. Available: https://doi.org/10.30645/brahmana.v5i1.279
M. H. A. Jihaannuriy, “Pengenalan Pelat Nomor Otomatis Menggunakan Metode Inception-ResNet v2 Skripsi Disusun Oleh,” Undergrad. Thesis, Progr. Stud. Mat. Fak. Sains dan Teknol. Univ. Negeri Syarif Hidayatullah., 2022, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/74283
A. D. M. HM and S. A. Junianti, “Penerapan Teknologi Blockchain Dalam Sistem Informasi Akuntansi,” Jawara Sist. Inf., vol. 1, no. 1, pp. 1–12, 2023, [Online]. Available: https://ejournal.universitasmandiri.ac.id/index.php/jsi/article/view/21
E. W. Hjelle and S. M. Kanstad, “An Approach to First-Level Situation Awareness for Autonomous Surface Vehicles,” M.S. thesis, Dept. Comput. Sci. Nor. Univ. Sci. Technol. Trondheim, Norw., no. June, 2023.
DOI: https://doi.org/10.21107/nero.v9i1.27462
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jeri Jeri