SELEKSI FITUR ALGORITMA GENETIKA DALAM KLASIFIKASI DATA REKAM MEDIS PCOS MENGGUNAKAN SVM

Fahriza Novianti, Nurissaidah Ulinnuha

Abstract


A hormonal imbalance causes a woman with polycystic ovarian syndrome (PCOS) to have an ovum or egg that does not mature normally. It usually occurs during the reproductive period, but is often difficult to detect due to lack of awareness. Therefore, it is important to detect this condition early so that proper treatment or prevention can be done. One way to diagnose PCOS is through the use of medical data. In this study, 40 variables were used, including hormonal data, ultrasound results, and other medical information. The method used was Support Vector Machine (SVM), which is able to handle non-linear data with a kernel. To improve accuracy, features were selected using a genetic algorithm, which resulted in 19 significant variables. By applying the selected variables as input, the classification produced the best model with 94.26% accuracy, 87.57% sensitivity, and 97.52% specificity. Without the feature selection process, SVM classification only has an accuracy of 82.46%, sensitivity of 60.91%, and specificity of 97.25%. From the findings of this research, it can be seen that the genetic algorithm feature selection method can improve SVM classification performance.

Keywords: Genetic Algorithm, Classification, PCOS, Feature Selection, SVM.


Full Text:

PDF

References


W. Chen and Y. Pang, “Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites,” Metabolites, vol. 11, no. 12, 2021, doi: 13390/metabo11120869.

W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex Intell. Syst., vol. 8, no. 3, pp. 2663–2693, 2022, doi: 11007/s40747-021-00637-x.

E. P. A. Akhmad, “Evaluasi Telemarketing Kartu Kredit Bank Menggunakan Algoritma Genetika untuk Seleksi Fitur dan Naive Bayes ( Evaluation of Bank Credit Card Telemarketing Using Genetic Algorithms for Feature Selection and Naive Bayes ),” J. Apl. Pelayaran dan Kepelabuhanan, vol. 10, no. 1, pp. 12–22, 2019.

R. Resmiati and T. Arifin, “Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” Sistemasi, vol. 10, no. 2, p. 381, 2021, doi: 132520/stmsi.v10i2.1238.

W. Widayani and H. Harliana, “Analisis Support Vector Machine Untuk Pemberian Rekomendasi Penundaan Biaya Kuliah Mahasiswa,” J. Sains dan Inform., vol. 7, no. 1, pp. 20–27, 2021, doi: 134128/jsi.v7i1.268.

D. Gunawan, D. Riana, D. Ardiansyah, F. Akbar, and S. Alfarizi, “Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023,” J. Tek. Komput. AMIK BSI, vol. 6, no. 2, pp. 174–180, 2020, doi: 131294/jtk.v4i2.

H. Harafani and A. Maulana, “Penerapan Algoritma Genetika pada Support Vector Machine Sebagai Pengoptimasi Parameter untuk Memprediksi Kesuburan,” J. Tek. Inform. STMIK Antar Bangsa, vol. V, no. 1, pp. 51–59, 2019.

S. F. Pane, R. Maulana Awangga, E. V. Rahcmadani, and S. Permana, “Implementasi Algoritma Genetika Untuk Optimalisasi Pelayanan Kependudukan,” J. Tekno Insentif, vol. 13, no. 2, pp. 36–43, 2019, doi: 136787/jti.v13i2.13

K. Krisnandi and H. Agung, “Implementasi Algoritma Genetika Untuk Memprediksi Waktu Dan Biaya Pengerjaan Proyek Konstruksi,” J. Ilm. FIFO, vol. 9, no. 2, p. 90, 2017, doi: 122441/fifo.2017.v9i2.001.

R. Iriany, A. W. Widodo, and W. F. Mahmudy, “Pemanfaatan Algoritma Genetika Untuk Optimasi 0 / 1 Multi-Dimensional Knapsack Problem Dalam Pendistribusian Produk ( Studi Kasus UD . TOSA ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 4, pp. 257–269, 2017.

I. H. Sugeha, R. L. Inkiriwang, and P. A. K. Pratasis, “Optimasi Penjadwalan Menggunakan Metode Algoritma Genetika Pada Proyek Rehabilitasi Puskesmas Minanga,” J. Sipil Statik, vol. 7, no. 12, pp. 1669–1680, 2019, [Online]. Available: https://ejournal.unsrat.ac.id/index.php/jss/article/view/26145.

C. B. Gokulnath and S. P. Shantharajah, “An optimized feature selection based on genetic approach and support vector machine for heart disease,” Cluster Comput., vol. 22, pp. 14777–14787, 2019, doi: 11007/s10586-018-2416-4.

R. T. Prasetio, A. A. Rismayadi, and I. F. Anshori, “Implementasi Algoritma Genetika pada k-nearest neighbours untuk Klasifikasi Kerusakan Tulang Belakang,” J. Inform., vol. 5, no. 2, pp. 186–194, 2018, doi: 131311/ji.v5i2.4123.

B. K. Khotimah, E. Setiawan, V. Sasmeka, A. Fridayanti, I. Maulana, and A. M. Zulfida, “Identifikasi Hama Dan Penyakit Tanaman Jagung Dengan Menggunakan Metode Klasifikasi Support Vector Machine (Svm),” J. Ilm. NERO, vol. 7, no. 1, pp. 69–74, 2022.

F. Novianti et al., “Prediksi Penggunaan Bahan Bakar pada PLTGU menggunakan Metode Support Vector Regression ( SVR ),” vol. 21, no. 2, pp. 249–255, 2022.

F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 577, 2018, doi: 125126/jtiik.201855983.

Y. N. Fuadah, I. D. Ubaidullah, N. Ibrahim, F. F. Taliningsing, N. K. Sy, and M. A. Pramuditho, “Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. dan Tek. Elektron., vol. 10, no. 3, p. 728, 2022, doi: 126760/elkomika.v10i3.728.




DOI: https://doi.org/10.21107/nero.v9i1.25399

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fahriza Novianti, Nurissaidah Ulinnuha