PREDIKSI NASABAH KREDIT USAHA RAKYAT MENGGUNAKAN ALGORITMA C4.5
Abstract
Banking is a financial institution that collects all public funds in the form of deposits and manages these funds to maintain liquidity and security in processing funds aimed at maximizing profits. Banks must provide financial traffic services needed by all customers for both internal and external transactions. Some programs offered by banks in providing financial services include the provision of micro-business credit (KUR) aimed at improving the community's economy. However, the problem that arises in the potential provision of KUR assistance is that it often misses the target, resulting in many customers not optimally receiving financial services. C4.5 Algorithm is an accurate data mining method used for data prediction and processing for decision making. This research aims to predict banking customers in providing KUR using the C4.5 algorithm. The methodology used is the Cross-Industry Standard Process Model for Data Mining, employing the C4.5 algorithm. The prediction results of micro-business credit recipients using the C4.5 algorithm are excellent, as seen from the calculation of entropy value of 0.97 and gain value of 0.69, as well as the formation of decision trees with several determinant data sets such as data from the Ministry of Home Affairs, OJK's Slik, repayment capacity, types of businesses, and locations. The optimization of the C4.5 algorithm in data processing helps in determining customers more optimally, reducing mis-targeted micro-business credit assistance.
Keywords: Customer, Algorithm C4.5, Data mining
Full Text:
PDFReferences
A. C. Rafaella, “Analisis Kredit Macet pada Kredit Usaha Rakyat (KUR) PT. Bank Rakyat Indonesia (Persero) Tbk Unit Rungkut Surabaya pada Masa Pandemi Covid-19,” Al-Kharaj J. Ekon. Keuang. Bisnis Syariah, vol. 4, no. 2, pp. 368–379, 2021, doi: 10.47467/alkharaj.v4i2.674.
R. Widayati and M. Efriani, “Aktivitas Pemberian Kredit Usaha Pada Pt. Bank Perkreditan Rakyat Batang Kapas,” Akad. Keuang. dan Perbank., vol. 1, no. 2, pp. 1–10, 2019.
D. Pratama and J. Fernos, “Prosedur Pelaksanaan Kredit Usaha Rakyat (Kur) Pada Pt. Bank Nagari Cabang Padang,” Akad. Keuang. Perbank., vol. 1, no. 2, pp. 1–9, 2019.
E. Johari, “Pelaksanaan Dana Kredit Usaha Rakyat (KUR) Perspektif Hukum Islam,” J. Aghina STIESNU Bengkulu, vol. 2, no. 2, pp. 163–177, 2019.
A. Orlando and R. Susanto, “Mekanisme Pencairan Kredit Usaha Rakyat pada PT. Bank Rakyat Indonesia Unit Lubuk Buaya,” Akad. Keuang. Perbank. Padang, vol. 2, no. 2, pp. 1–10, 2019, [Online]. Available: https://osf.io/zuv2y/
E. P. Cynthia and E. Ismanto, “Metode Decision Tree Algoritma C.45 Dalam Mengklasifikasi Data Penjualan Bisnis Gerai Makanan Cepat Saji,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. July, p. 1, 2018, doi: 10.30645/jurasik.v3i0.60.
D. Kurniawan, A. Anggrawan, and H. Hairani, “Graduation Prediction System On Students Using C4.5 Algorithm,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 358–365, 2020, doi: 10.30812/matrik.v19i2.685.
M. A. Abdillah, A. Setyanto, and Sudarmawan, “Implementasi Decision Tree Algoritma C4 . 5 Untuk Memprediksi Kesuksesan Pendidikan Karakter,” Respati, vol. XV, pp. 59–69, 2020, [Online]. Available: http://jti.respati.ac.id/index.php/jurnaljti/article/view/349
F. Wiza and B. Febriadi, “Classification Analysis Using C4.5 Algorithm To Predict The Level of Graduation of Nurul Falah Pekanbaru High School Students,” IJISTECH (International J. Inf. Syst. Technol., vol. 2, no. 2, p. 43, 2019, doi: 10.30645/ijistech.v2i2.21.
G. A. Putri, D. Maryono, and F. Liantoni, “Implementation of the C4.5 Algorithm to Predict Student Achievement at SMK Negeri 6 Surakarta,” IJIE (Indonesian J. Informatics Educ., vol. 4, no. 2, p. 51, 2020, doi: 10.20961/ijie.v4i2.47124.
E. Darmawan, “C4.5 Algorithm Application for Prediction of Self Candidate New Students in Higher Education,” J. Online Inform., vol. 3, no. 1, p. 22, 2018, doi: 10.15575/join.v3i1.171.
V. S. Ginting, K. Kusrini, and E. Taufiq, “Implementasi Algoritma C4.5 untuk Memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan Sekolah Menggunakan Python,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, pp. 36–44, 2020, doi: 10.35585/inspir.v10i1.2535.
E. Hasmin and S. Aisa, “Penerapan Algoritma C4.5 Untuk Penentuan Penerima Beasiswa Mahasiswa,” CogITo Smart J., vol. 5, no. 2, p. 308, 2019, doi: 10.31154/cogito.v5i2.219.308-320.
N. Y. L. Gaol, “Prediksi Mahasiswa Berpotensi Non Aktif Menggunakan Data Mining dalam Decision Tree dan Algoritma C4.5,” J. Inf. Teknol., vol. 2, pp. 23–29, 2020, doi: 10.37034/jidt.v2i1.22.
S. Suyadi, A. Setyanto, and H. Al Fattah, “Analisis Perbandingan Algoritma Decision Tree (C4.5) Dan K-Naive Bayes Untuk Mengklasifikasi Penerimaan Mahasiswa Baru Tingkat Universitas,” Indones. J. Appl. Informatics, vol. 2, no. 1, p. 59, 2017, doi: 10.20961/ijai.v2i1.13258.
F. Rahman, H. Zulfia Zahro’, and F. X. Ari Wibisono, “Penerapan Algoritma C4.5 Dalam Memprediksi Asal Calon Mahasiswa Berbasis Website (Studi Kasus : Fakultas Hukum Universitas Mataram),” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 161–169, 2020, doi: 10.36040/jati.v4i2.2654.
M. P. A. S. R. R. A. P. Pritasari, “Klasifikasi untuk Memprediksi Pembayaran Kartu Kredit Macet,” J. Teknol., vol. 3, no. 1, pp. 91–101, 2020.
C. Anam and H. B. Santoso, “Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,” Energy - J. Ilm. Ilmu-Ilmu Tek., vol. 8, no. 1, pp. 13–19, 2018, [Online]. Available: https://ejournal.upm.ac.id/index.php/energy/article/view/111
Yadi, “Implementasi Algoritma C4.5 Klasifikasi Calon Penerima Beasiswa,” Jurnal Simatec., Vol 11, No 1, 2022 [Online]. Available: https://journal.trunojoyo.ac.id/simantec/issue/view/1085
DOI: https://doi.org/10.21107/nero.v9i1.25348
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 yadi yadi