KLASIFIKASI DIAGNOSIS DIABETES MELITUS MENGGUNAKAN METODE NAÏVE BAYES DENGAN SELEKSI FITUR BACKWARD ELIMINATION

Hendro Nugroho, Gusti Eka Yuliastuti, Andrean Firman Pradana

Abstract


Diabetes mellitus is a dangerous disease caused by high sugar levels (hyperglycemia). Hyperglycemia can cause sufferers to experience chronic disease, damage to organs in the body. Diabetes mellitus is a dangerous disease, so it is very interesting to classify diabetes mellitus using the Naïve Bayes method with Backward Elimination (BE) feature selection. The Diabetes mellitus dataset used in the research consisted of 101 data with 5 attributes consisting of age, Current Blood Sugar (GDS), 2 hours after eating/Post Pradial (PP), Fasting Blood Sugar (GPD) levels, and Low Density Lipoprotein (LDL) . To get classification results, there are several steps taken, namely data input, BE feature selection, 8-Fold Cross Validation, Naïve Bayes and results testing. From the classification results, testing was carried out using the accuracy, precision and recall calculation method. To find out the results of classification performance, four test scenarios were carried out, namely the first scenario, Naïve Bayes combined with BE and 8-Fold Cross Validation, accuracy of 77%, second scenario, Naïve Bayes combined with 8-Fold Cross Validation, accuracy of 78.1%, third scenario, Naïve Bayes combined with BE accuracy is 86% and the fourth scenario of Naïve Bayes classification accuracy is 90%, so the accuracy of Naïve Bayes classification with BE feature selection is better.

Keywords: Diabetes melitus, Naïve bayes, Backward Elimination. 8-Flod Cross Validation.

Full Text:

PDF

References


Z. Xu and Z. Wang, “A Risk Prediction Model for Type 2 Diabetes Based on Weighted Feature Selection of Random Forest and XGBoost Ensemble Classifier,” 2019 Elev. Int. Conf. Adv. Comput. Intell., pp. 278–283.

P. M. Maina, M. Pienaar, and M. Reid, “International Journal of Nursing Studies Advances Self-management practices for preventing complications of type II diabetes mellitus in low and middle-income countries : A scoping review,” Int. J. Nurs. Stud. Adv., vol. 5, no. May, p. 100136, 2023.

R. A. Alassaf, K. A. Alsulaim, N. Y. Alroomi, N. S. Alsharif, M. F. Aljubeir, and O. Sunday, “Preemptive Diagnosis of Diabetes Mellitus Using Machine Learning,” 2018 21st Saudi Comput. Soc. Natl. Comput. Conf., pp. 1–5, 2018.

Khairani, “Hari Diabetes Sedunia Tahun 2018,” in Pus. Data dan Inf.Kementrian keshatan, 2019, pp. 1 – 8.

A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” vol. IV, no. September, pp. 15–21, 2020.

M. D. Nurmalasari, “Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor untuk Membangun Pengetahuan Diagnosa Penyakit Diabetes,” vol. 5, no. 1, pp. 52–59, 2021.

S. Islam and M. M. Rahman, “Feature Selection and Classification of Spinal Abnormalities to Detect Low Back Pain Disorder using Machine Learning Approaches,” 2019 1st Int. Conf. Adv. Sci. Eng. Robot. Technol., vol. 2019, no. Icasert, pp. 1–4, 2019.

O. Tejaswini, A. S. K. P, K. R. Geethika, and G. R. Brindha, “New Feature Selection Process to Enhance Naïve Bayes Classification,” 2018 Second Int. Conf. Electron. Commun. Aerosp. Technol., no. ICECA, pp. 98–101, 2018.

M. Tharmakulasingam, C. Topal, A. Fernando, and R. La Ragione, “Backward Feature Elimination for Accurate Pathogen Recognition Using Portable Electronic Nose,” 2020 IEEE Int. Conf. Consum. Electron., pp. 1–5, 2020.

E. A. P. S. Siregar, “Efektivitas perawatan ulkus diabetikum terhadap penerimaan diri pasien diabetes melitus tipe II,” Jumantik, vol. 4, no. 2, pp. 178 – 187, 2019.

O. Adeleke, H. Sokolayam, D. Emmanuel, A. Daniel, and A. Busola, “Diabetes mellitus : From molecular mechanism to pathophysiology and pharmacology,” Med. Nov. Technol. Devices, vol. 19, no. February, p. 100247, 2023.

F. Liantoni and H. Nugroho, “Klasifikasi Daun Herbal Menggunakan Metode Naïve Bayes Classifier Dan Knearest Neighbor,” J. Simantec, vol. 5, no. 1, pp. 9–16, 2015.

S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor , Decision Tree Serta Naive Bayes Orange Data Mining Implementation For Student Graduation Classification Using K-Nearest Neighbor ,”Jurnal Ilmiah Nero, vol. 6, no. 2, pp. 133–144, 2021.

G. E. Yuliastuti, C. N. Prabiantissa, and A. M. Rizki, “Klasifikasi Penyakit Menular Seksual Menggunakan Naïve Bayes,” INTEGER J. Inf. Technol., vol. 7, no. 1, pp. 48–53, 2022.

A. A. Mahran, R. K. Hapsari, and H. Nugroho, “Penerapan Naive Bayes Gaussian Pada Klasifikasi Jenis Jamur Berdasarkan Ciri Statistik Orde,” vol. 5, no. 2, 2020.

L. R. T, “Penerapan Particle Swarm Optimization (PSO) untuk seleksi atribut dalam meningkatkan akurasi Prediksi Diagnosis Penyakit Hepatitis dengan Metode Algortima C4.5,” Swabumi, vol. 4, no. 1, pp. 1–15, 2016.

I. W. Gamadarenda, I. Waspada, “Implementasi Data Mining Untuk Deteksi Penyakit Ginjal Kronis (PGK) Menggunakan K-Nearest Neighbor (KNN) Dengan Backward Data Mining Implementation For Detection Of Chronic Kidney (CKD) Using K-Nearest Neighbor (KNN) With Backward Elimination,”, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) vol. 7, no. 2, pp. 417–426, 2020.

L. S. Ramdhani, “Penerapan Particle Swarm Optimization ( Pso ) Untuk Seleksi Atribut Dalam Meningkatkan Akurasi Prediksi Diagnosis Penyakit Hepatitis Dengan Metode Algoritma C4 . 5,” Swabumi, vol. IV, no. 1, pp. 1–15, 2016.




DOI: https://doi.org/10.21107/nero.v8i2.21110

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hendro Nugroho, Gusti Eka Yuliastuti, Andrean Firman Pradana