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A B S T R A C T 

Mangroves are one of the forest ecosystems with the capacity to reduce greenhouse effect. However, there is limited data on the carbon absorbent 

properties, and, a fast as well as accurate method of estimating the stock in mangrove is needed. The objective of this research, therefore, was to obtain 

an estimation model of mangrove carbon stocks, using LDCM satellite imagery. This development involved a hybrid method, where information obtained 

from LDCM satellite imagery were combined with the field data. The result of this study identified the best model to estimate carbon stock. This involved 

the combination of total vegetation stock, using the VARI vegetation index (power regression/ geometry) and soil composition, based on six variables 

multiple regression. The%RMSE test result was determined to be 9.58%. In addition, field data was not required in models involving two variables 

(MSAVI vegetation index and average sediment depth 100.6 cm), and the % RMSE determined was 34.18%. 
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1. Introduction 

Deforestation refers toactivities involved in reduced forest vegetation, 

which is responsible for CO2 absorption. In addition, forests in Indonesia 

have the potential to absorb about 48% gas emissions, hence adequate 

management is very important (Wibowo, 2010). These include the 

mangroves, as one of the ecosystems with a potential to reduce the 

greenhouse effect and cause climate change (Komiyama, et al., 2008). 

Moreover, there is limited information and data on the intrinsic carbon 

absorbent capacity (Klinkhamer, 1995). Several studies have recognized 

mangrove as an ecosystem with the highest competence in this aspect, 

compared to other forests forms (tropical, subtropical or boreal forests). 

This is attributed to the significant storage of carbon in the organic-rich soil 

(Hooijer et al., 2010; Page et al., 2011; Donato et al., 2012; Kauffman & 

Donato, 2012). 

 Furthermore, only about 2% of the coastal areas worldwide are 

occupied by mangroves, andare responsible for 5% primary production, 

12% respiration, and approximately 30% carbon absorption. During the 

incidence of mangrove deforestation, only roughly 0.7% of the tropical 

forest area is anticipated to supply 10% CO2 (Alongi & Mukhopadhyay, 

2015). Moreover, about 50% more mangroves in the world have been 

destroyed with approximately 35% resulted from cultivation and coastal 

development within the last two decades(Feller et al., 2010). Previous 

studies have shown the existence of 70 species, and about 16% are in danger 

of extinction (Polidoro et al., 2010). The extent of damage reported in 

Indonesia alone is up to 40% from 1986-1990 (Noor et al., 1999).  

 In addition, appropriate and accurate methods are required to 

obtain more valid carbon stock related information. The objective of this 

study, therefore, is to develop a mangrove carbon stock estimation model 

using LDCM imagery. Thisinvolved a hybrid combination of satellite 

image and field data. 

2. Materials And Methods  

The study location were Larangan, Galis, Pademawu, and Tlanakan sub-

districts of Pamekasan Regency. Furthermore, the stages of this 

investigation were as follows: (1) LDCM imagery analysis using vegetation 

index, with about 14 models, including GNDVI (Green normalized 

difference Vegetation index) (Gitelson & Merzlyak, 1997), GR (Green 

Ratio) (Waseret al., 2014), MSAVI (modified SAVI) (Qi et al. , 1994), 

NDVI (normalized difference vegetation index) (Rouse et al., 1973; 

Pettorelliet al., 2011; Gitelson & Merzlyak, 1997), NDWI (Normalized 

Difference Water Index) (Gao, 1996), NNIP (Normalized Near Infrared) 

(Sripadaet al, 2005; Ng et al., 2017), RVI (Ratio Vegetation index) 

(Broge& Leblanc, 2001), MTV (Modified Triangular Vegetation Index 1) 

(Haboudaneet al., 2004), MTV 2 (Modified Triangular Vegetation Index 2) 

(Haboudaneet al., 2004), RDVI (renormalized difference vegetation index) 

(Roujean & Breon, 1995), VARI (vegetation atmospherically resistant 

index) (Gitelsonet al., 2002), VI green ( Gitelsonet al., 2002), MSR 

(Modified Simple Ratio) (Chen, 1996; Haboudan eet al., 2004), TVI 

(triangular vegetation index) (Broge& Leblanc, 2001). (2) Mangrove data 

measurement for biomass and carbon estimations. (3) Hybrid modeling was 
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then performed using a combination of satellite imagery and field 

measurement data, according to Gumbricht, (2015). 

 The test for accuracy involved using correlation coefficient (r) 

and Root Mean Square Error (RMSE) to determine the best vegetation 

index transformation to model carbon stocks in mangroves (Clark et al., 

2011; Cartuset al., 2014; Kulawardhana. et al., 2014; Frananda et al., 2015; 

Hu et al., 2016). Subsequently, RMSE test was conducted using 30 plots, 

with the following equation:  

𝑅𝑀𝑆𝐸 = √
𝑖

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1                                                               (1) 

RMSE % =  100 ×
𝑅𝑀𝑆𝐸

�̅�
                                                                    (2) 

where: 𝒙𝒊 = measured carbon stock, 𝒚𝒊  = carbon stock estimation, �̅� = 

average measured carbon stock(Weng, 2010a; Chuvieco et al., 

2010;(Köhlet al., 2006)Vicharnakorn et al., 2014; Kamal, 2015; Alparone 

et al, 2015;Thenkabail, 2016; Alan et al., 2017;) 

 

3. Results and Discussion  

3.1. Carbon content modeling of mangrove vegetation using LDCM 

imagery 

The field measurement results published in Muhsoniet al., (2020) showed 

a total mangrove carbon stock reaching 306.04 t C ha-1. This comprises 

82.88% for soil carbon, which is 4.8 times greater than others, including 

tree (9.49%), root (7.11%), and subsurface plant (0.52 %).  

 In addition, the carbon regression results estimated with LDCM 

imagery vegetation index showed the tendency for RMSE determination 

values to reach > 0.5 using the following combinations with regression: 

VARI Power/geometry, VARI exponential, VI green Power/geometry, VI 

green exponential, GR Power/geometry, VARI Polynomial, GR 

Exponential. The research by Muhsoniet al., (2018) identified the following 

combinations to be most appropriate, while using Sentinel 2 imagery: 

exponential regression for vegetation index NDVI, NDVI2, NNIP, SVI, 

MTV2, RDVI, MSR and power/geometry for GNDVI vegetation index, 

NDVI, NDVI2, NNIP, SVI, RDVI, MSR.  

 

Table 1. RMSE test results and estimation model of the biomass 

carbon using LDCM imagery  

No Vegetation 

Index 

Regression (X) 

Equation Model of 

Biomass Carbon * 

RMSE 

 (ton 

piksel-1) 

R2 

1 VARI 

Power/geometry 

y = 66,38x2,104 1,39791 0,624 

2 Exponential 

VARI 

y = 0,298e9,651x 1,44074 0,66 

3 VI green 

Power/geometry 

y = 136,4x1,997 1,52565 0,545 

4 VI green 

exponential 

y = 0,354e13,88x 1,5849 0,563 

5 GR Power / 

geometry 

y = 0,368x6,759 1,59207 0,563 

6 Polynomial 

VARI 

y = 117,4x2 - 21,41x 

+ 1,646 

1,62664 0,58 

7 GR Exponential y = 0,003e4,871x 1,73987 0,559 

*Description: Y=Biomass Carbon, X = Vegetation Index Value, n (RMSE) 

= 30 

 

The best RMSE test results for mangrove vegetation carbon were 

obtained by using a VARI (vegetation atmospherically resistant index) with 

power/geometry regression for LDCM imagery (1.39791 ton / 900m-2). 

This result was different from the Sentinel-2 imagery (published in 

Muhsoniet al., 2018) at 0.247056 ton 100m-2, although the best vegetation 

index corresponded to NNIP. Kamal (2015) performed a study in 

Karimunjawa using Landsat TM imagery, and showed SR as the best index, 

with RMSE of 1.23 ton 900m-2. Meanwhile, SPOT 5 and Landsat TM were 

used by Hamdanet al. (2013) and NDVI was obtained as superior, alongside 

the adoption of non-linear regression. 

 

3.2. Estimation Model of Soil Carbon Content using LDCM imagery. 

The soil carbon was estimated using multiple regression modeling of 

LDCM imagery based on the following simulations: (referring to research 

by Muhsoniet al., 2018) 

1. Two variable regression, including X1 = the index value of the 

LDCM imagery vegetation and X2 = the depth of the sediment. 

2. Regression with three variables, specifically X1 = vegetation index 

value of LDCM image, X2 = sediment depth and X3 = bulk Density, 

3. Regression with 6 variables, including X1 = vegetation index value 

of LDCM imagery, X2 = sediment depth, X3 = Bulk Density, X4 

=% C depth 0-15 cm, X5 =% C depth 15-50 cm and X6 =% C depth> 

50 cm. 

Subsequently RMSE test results were analyzed on the regression, 

alongside the most significant value determined for six, three and two 

variables. The outcome of multiple modeling for the best six variables using 

LDCM images was RDVI (renormalized difference vegetation index), with 

an RMSE of 3.14479 ton 900m-2, while MSAVI (modified Soil-Adjusted 

Vegetation Index) provided the best variable at 6.15302 ton 900m-2. In 

addition, the best two-variable model was MSAVI at 9.47993 ton 900m-2. 

Muhsoni et al., (2018) used Sentinel-2 imagery, and NDRE (Normalized 

difference Red-Edge index) with RMSE of 0.5011 ton100m-2 as well as 

WVVI (World View Improved Vegetative Index) at 0.5011 ton 100m-2 

were selected. Based on the three variables evaluation, VIRE (Vegetation 

Index based on RedEdge) at 0.5924 ton 100m-2 was determined to be 

superior, while NDRE at 0.7747 ton100m-2 was chosen for the two variable 

model.  

3.3. Determination of the Best Model Mangrove Carbon Content using 

LDCM imagery 

 LDCM imagery modeling was performed by combining the 

carbon mangrove vegetation and soil carbon estimation models. Based on 

several simulations, the overall best was determined as follows (pixel area 

30x30 m): 

1. Model 1 with the following equation (Figure 1):  

Y = (66,38*(X1^2,104))+(-97,618+2,740589*X2 +0,36241*X3+ 

40,69228*X4 -7325,77*X5 +9758,635*X6 -526,508*X7) 

Description:  
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X1= VARI vegetation index,  

X2= RDVI vegetation index,  

VARI=  
(𝐺−𝑅)

(𝐺+𝑅−𝐵)
,  

RDVI=[(𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅)2],  

G = band 3, R=band 4, B= band 2, NIR= band 5,  

X3=  Sediment depth (cm),  

X4=  Bulk density(g cm-3),  

X5= %C depth 0-15cm,  

X6= % C depth15-50 cm,  

X7 = % C depth >15cm 

2.  Model 2 with the following equation (Figure 2): 

Y = (66,38*(X1^2,104)) + (-46,1009 + 69,02285*X2 + 0,182429*X3 + 

19,40405*X4) 

Description:  

X1= VARI vegetation index,  

X2= MSAVI vegetation index,  

VARI=  
(𝐺−𝑅)

(𝐺+𝑅−𝐵)
,  

MSAVI= 
1

2
[2 ∗ 𝑁𝐼𝑅1 + 1 − √(2 ∗ 𝑁𝐼𝑅1 + 1)2 − 8 ∗ (𝑁𝐼𝑅1 − 𝑅)],  

G= band 3, R= band 4, B= band 2, NIR= band 5,  

X3=Sediment depth(cm),  

X4= Bulk density(g cm-3). 

3.  Model 3 with the following equation (Figure 3): 

Y = (66,38*(X1^2,104))+(-13,91+20,54032*X2 + 0,26787*X3) 

Description: 

 X1= VARI vegetation index,  

X2=  MSAVI vegetation index,  

VARI=  
(𝐺−𝑅)

(𝐺+𝑅−𝐵)
,  

MSAVI= 
1

2
[2 ∗ 𝑁𝐼𝑅1 + 1 − √(2 ∗ 𝑁𝐼𝑅1 + 1)2 − 8 ∗ (𝑁𝐼𝑅1 − 𝑅)] ,  

G= band 3, R= band 4, B= band 2, NIR= band 5,  

X3= Sediment depth(cm). 

4.  Model 4 with the following equation (Figure 4):  

Y = (66,38*(X1^2,104))+(-13,91+20,54032*X2 + 0,26787*X3) 

Description:  

X1= VARI vegetation index, 

 X2 = MSAVI vegetation index,  

VARI=  
(𝑮−𝑹)

(𝑮+𝑹−𝑩)
,  

MSAVI= 
𝟏

𝟐
[𝟐 ∗ 𝑵𝑰𝑹𝟏 + 𝟏− √(𝟐 ∗ 𝑵𝑰𝑹𝟏 + 𝟏)𝟐 − 𝟖 ∗ (𝑵𝑰𝑹𝟏 − 𝑹)],  

G= band 3, R= band 4, B= band 2, NIR= band 5,  

X3 = average sediment depth( 100,63cm), 

The results showed model 1 as the best modeling to estimate 

mangrove carbon with LDCM imagery. This involves a combination of 

data obtained using the vegetation atmospherically resistant index (VARI) 

power/geometry regression equation and soil content determinations with 

6 variables multiple regression. Therefore, the RMSE model test outcome 

was 2.53079 tonnes 900m-2 and 9.58%. However, model 2 merges the 

information acquired from VARI with soil carbon estimations, using three-

variable multiple regression, and generated an RMSE of 6.87089 ton 900m-

2 (26.0%). Meanwhile, the combination in Model 3 uses two variables, with 

RMSE of 6.65033 ton 900m-2 (25.17%). In addition, model 4 entered the 

average sediment depth value obtained in the field measurement results of 

100.63 cm. The most suitable equation comprises the incorporation of 

vegetation biomass carbon estimates using the power regression 

equation/geometry of VARI with three-variable multiple regression for 

soil. This generated an RMSE of 9.03122 ton 900m-2 (34.180%).  

 Compared to the mangrove carbon stock modeling with Sentinel 2 

imagery, Model 1 involved the NNIP index during vegetation carbon 

estimation with power/geometry regression, alongside the application of 

six variables multiple regression with NDRE or WVVI index to determine 

the soil stock. This generated a %RMSE result of 16.12%. In addition, 

model 2 used the NNIP index to estimate the vegetation carbon with three-

variable applied with VIRRE to determine the soil stock. The % RMSE 

was evaluated to be 19.03%. In addition, NNIP was also applied in model 

3, although two variables were used together with the NDRE index for soil 

estimations, which collectively obtained a % RMSE of 24.63%. Moreover, 

similar technique was implemented in Model 4, and 3-variable multiple 

regression was adopted, where the %RMSE test results was determined as 

33.89% (Muhsoniet al., 2018). 

 

 

 

 

 

 

 

 

Figure 1. Map of mangrove carbon stock from Model 1 LDCM 

imagery. 
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Figure 2. Map of mangrove carbon stock from Model 2 LDCM 

imagery  

 

 

Figure 3. Map of mangrove carbon stock from Model 3 LDCM 

imagery. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Map of mangrove carbon stock from Model 4 LDCM 

imagery. 
 

Figure 4. Map of mangrove carbon stock from Model 4 LDCM imagery. 

4. Conclusion 

The model with the best LDCM imagery was used to estimate the mangrove 

vegetation carbon stock. This comprised a combination of the VARI 

vegetation index (red, green and blue), and soil sediment estimations 

derived using RDVI and MSAVI (encompassing red channels and Near 

Infra Red). The %RMSE test result was 9.58%. However, field data is not 

required in models involving similar combinations, where two variable 

multiple regression (MSAVI vegetation index and average sediment depth 

100.6 cm) are applied in determining the soil stock. The %RMSE test result 

was determined as 34.18% 
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