
 

International journal of science, engineering, and information technology 
Volume 09, Issue 02, July 2025 

Journal homepage: https://journal.trunojoyo.ac.id/ijseit  

 

 

* Corresponding author. Phone : +6285645123565 

E-mail address: muhammadnajib@unibamadura.ac.id 

 

E-ISSN 2548-4214 

Improving Root Cause Analysis of Production Defects Using AI: A Case 

Study in An Automotive Manufacturing Plant 

Muhammad Najib, Emon Rifa’i 

Departement of Informatics, Universitas KH. Bahaudin Mudhary Madura, Sumenep, Indonesia  

 

A B S T R A C T 

In automotive manufacturing, repetitive defects often occur across different time periods, creating a valuable historical dataset containing defect names and their 

corresponding root causes. Traditionally, identifying the root cause of a production defect relied heavily on human analysis, requiring significant time and on-site 

inspection. This often led to delayed countermeasures, increased production downtime, and additional issues such as line stops. This study presents an AI-based 

approach to assist root cause analysis using historical defect data, aiming to reduce the analysis time and improve feedback accuracy. The implementation focused 

on enabling faster and more accurate identification of root causes by integrating a machine learning model into the factory’s defect recording system (ATPPM, 

Analisa Tindakan Penanggulangan dan Pencegahan Masalah). The development process involved data preprocessing, model training, and API deployment. The 

original dataset consisted of 3,128 records, which were cleaned and reduced to 1,449 labeled entries, each annotated with one of 161 unique root cause labels. 

Eleven machine learning models were evaluated, including Logistic Regression, Random Forest, SVM, and RNN. Initial evaluation using F1-score, precision, and 

recall showed Logistic Regression achieving the best F1-score of 0.83. Further validation using 5-Fold Cross Validation identified the Support Vector Machine 

(SVM) as the best-performing model, with an average accuracy of 89.1%. This model was deployed via a Python Flask API and integrated into the existing ATPPM 

system. The AI-powered system significantly accelerated the root cause analysis process, reducing the average analysis time by 228 minutes. Potential future 

enhancements involve automating the model’s training process on a regular schedule (weekly or daily), integrating additional data sources including big data and 

quality management systems, and scaling the current API implementation to multiple production lines for wider impact. 
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1. Introduction 

In the automotive manufacturing industry, maintaining high product 

quality and operational efficiency is critical. Production defects, even minor 

ones, can lead to significant consequences, including increased rework, 

production line stops, and customer dissatisfaction. Root Cause Analysis 

(RCA) is a key method used to identify the underlying causes of defects 

and to implement effective corrective actions. However, traditional RCA 

relies heavily on human expertise and manual investigation, which often 

results in delayed responses, inconsistent results, and increased operational 

costs [7]. In many manufacturing environments, particularly in developing 

regions, operators face difficulty in determining the root causes of 

production defects due to limited analytical tools and time constraints. 

Although manufacturing systems often record defect histories, these 

datasets are typically underutilized. In such cases, repetitive defects with 

previously known solutions continue to consume resources and time during 

reanalysis. This study addresses that gap by applying Artificial Intelligence 

(AI) to leverage historical defect data and assist in predicting root causes 

faster and more accurately. 

The emergence of AI and Machine Learning (ML) techniques has 

enabled predictive analytics to be applied effectively in various industries, 

including manufacturing [15]. Predictive models can process large volumes 

of past data, extract meaningful patterns, and support real-time decision-

making, particularly in defect classification, anomaly detection, and 

process optimization [18][20]. Prior works have shown that ML techniques 

such as Support Vector Machines (SVM), Random Forest, and Neural 

Networks are effective in defect detection and classification tasks [3][10]. 

However, limited research exists on using AI specifically for root cause 

prediction in the automotive sector. 

This research proposes the development and deployment of an AI-

based system to support root cause analysis in a car manufacturing plant in 

Indonesia. By training machine learning models on historical data 

consisting of defects and their confirmed root causes, the system aims to 

assist production operators by providing automated predictions for new 

defect entries. This AI assistance reduces analysis time significantly and 

improves the consistency and accuracy of feedback given during problem-

solving processes.  

The objectives of this study are twofold: (1) to reduce the time required 

for analyzing and acting on production defects by using AI predictions, and 

(2) to build a scalable AI architecture that can be integrated with existing 

systems and potentially expanded across other production lines. This paper 

also presents a comparison of multiple ML models, highlighting the most 

effective one for root cause prediction, and discusses the practical 
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implementation of the AI model within the factory’s production 

environment. 

2. Materials and Methods 

2.1. Materials 

The primary material used in this study is a dataset extracted from the 

defect reporting system of a production line from automotive 

manufacturing plant in Indonesia. The dataset contains historical records of 

production defects, including the defect name, its corresponding area, and 

the analyzed root cause. This dataset is described in Table 1.  

 

Table 1. Dataset of defect and root cause historical record. 

 

Initially, 3,128 records were collected from the system’s database. 

However, due to the presence of inconsistent, duplicated, or irrelevant 

entries, a data cleaning process was conducted. This involved: 

• Data Deduplication 

• Manual Annotation and grouping similar defect/root cause terms 

• Stopword Removal and Text Normalization 

After cleaning, the resulting dataset consisted of 1,449 valid records, 

annotated with 161 unique root cause labels, each label having at least 9 

records. The final dataset is described in Table 2 that simplified to Text and 

Label columns. Text column contains combination of Area and Defect 

Name, and label contains the root cause category as manual annotation.  

This final dataset was split into 70% for training and 30% for testing. 

 

Table 2. Final dataset of defect and root cause group (1 label). 

2.2. Machine Learning Models 

In the implementation phase of this study, several established machine 

learning models were selected to address the defect classification problem. 

These models have been widely applied in related research domains. The 

following section provides a concise overview of each model: 

2.2.1. K-Nearest Neighbors (KNN) 

A non-parametric, instance-based learning algorithm that 

classifies a data point based on the majority class of its k-nearest 

neighbors in the feature space [1]. 

2.2.2. XGBoost (Extreme Gradient Boosting) 

A scalable, tree-based ensemble method that uses gradient 

boosting techniques for classification and regression tasks, 

known for its performance in structured data problems [5]. 

2.2.3. LightGBM (Light Gradient Boosting Machine) 

A highly efficient gradient boosting framework that uses 

histogram-based algorithms, enabling faster training and lower 

memory usage than XGBoost [12]. 

2.2.4. Decision Tree 

A tree-structured model where each internal node represents a 

feature condition and each leaf node represents a class label. It is 

interpretable and simple to implement [16]. 

2.2.5. Random Forest 

An ensemble of decision trees trained on different subsets of the 

data. It improves accuracy and reduces overfitting by aggregating 

predictions [4]. 

2.2.6. Naïve Bayes 

A probabilistic classifier based on Bayes’ theorem with the 

assumption of feature independence. It performs well on high-

dimensional data [8]. 

2.2.7. Linear Discriminant Analysis (LDA) 

A classification technique that models the difference between 

classes using linear combinations of features, assuming Gaussian 

distributions [9]. 

2.2.8. Support Vector Machine (SVM) Linear 

A supervised learning algorithm that finds the optimal hyperplane 

to separate classes using a linear decision boundary [6]. 

2.2.9. Support Vector Machine (SVM) Non-Linear (RBF Kernel) 

Uses the Radial Basis Function (RBF) kernel to map input data to 

a higher-dimensional space for classification of non-linearly 

separable data [6]. 
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2.2.10. Logistic Regression 

A statistical model used for binary classification tasks that 

estimates the probability of a class label using a logistic function 

[11]. 

2.2.11. Recurrent Neural Network (RNN) 

A type of neural network suitable for sequential data, capable of 

retaining memory of previous inputs using hidden states [14]. 

2.3. Evaluation Metrics 

As this study addresses a real-world quality control problem in a 

manufacturing environment, it is essential to ensure that the machine 

learning models not only achieve high overall accuracy, but also balance 

precision and recall. For this reason, appropriate evaluation metrics are 

applied as described below. 

2.3.1. Precision 

Precision is the ratio of correctly predicted positive observations 

to the total predicted positives. It is a measure of the model’s 

exactness, as formula mentioned in Equation 1 that TP stands for 

True Positive, and FP stands for False Positive. 

 

    (1) 

 

2.3.2. Recall (Sensitivity) 

Recall is a measure of the model’s completeness. It is the ratio of 

correctly predicted positive observations to all actual positives, so 

that it’s include FN (False Negative) in the formula that express 

in Equation 2.  

 

   (2) 

 

2.3.3. F1-Score 

F1-Score is the harmonic mean of Precision and Recall. It 

balances both metrics and is useful in imbalanced class scenarios. 

The formula is described in Equation 3. 

 

  (3) 

 

2.3.4. K-Fold Cross Validation 

A resampling technique used to evaluate models by dividing the 

data into k equal-sized folds. Each fold is used once as the test 

set, while the remaining k−1 folds are used for training. The final 

performance is the average of the scores across all k iterations 

[13]. 

2.4. System and Tools 

The AI model was built using Python programming language, 

leveraging the Flask framework to develop a lightweight REST API. The 

API was deployed on a Windows Server environment to integrate directly 

with the factory’s existing ATPPM (Analisa Tindakan Penanggulangan 

dan Pencegahan Masalah) system, whose interface is shown in Figure 1. 

The ATPPM system records analysis reports of production defects, 

including the corrective and preventive actions taken. This system has been 

in operation for the past 3 years on the production line that serves as the 

object of this study. 

Figure 1: The Interface of ATPPM system to input Root Cause Analysis 

of Defect. 

 

The system’s Natural Language Processing (NLP) components were 

developed using the NLTK library, focusing on basic preprocessing tasks 

such as tokenization, stopword removal, and basic synonym handling to 

handle variations in defect/root cause descriptions [2]. 

2.5. Methodology 

The methodology for this research is explained in Figure 2, that 

involved the following stages: 

Figure 2: Methodology of AI Implementation Research for Root Cause 

Analysis in Manufacturing Plant. 

 

2.5.1. Data Collection & Annotation 

Defect and root cause data were collected and manually annotated 

into meaningful categories. 

2.5.2. Data Preprocessing, Data Augmentation 

Standard NLP preprocessing was applied, including cleaning, 

tokenization, and manual correction for mislabeled or ambiguous 

terms [19]. Data Augmentation is needed to address the issue of 

data imbalance, data duplication was used for underrepresented 

labels. 

2.5.3. Data Separation for Training and Test 

The targeted dataset was split into 70% for training and 30% for 

testing. 

2.5.4. Model Training & Evaluation (Model Insight) 

Eleven popular classification models were selected for 

benchmarking: K-Nearest Neighbors (KNN), XGBoost, 

LightGBM, Decision Tree, Random Forest, Naïve Bayes, Linear 

Discriminant Analysis (LDA), Support Vector Machine (SVM) 

Linear, SVM Non-Linear (using RBF Kernel), Logistic 

Regression, and Recurrent Neural Network (RNN). These models 

were evaluated using Precision, Recall, and F1-score metrics [17]. 

Additionally, a K-Fold Cross Validation was performed to validate 

model consistency and avoid overfitting. 
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2.5.5. Model Selection & Deployment 

Multiple machine learning models were trained and evaluated 

using consistent metrics such as precision, recall, and F1-score. To 

ensure performance stability and avoid overfitting, 5-Fold Cross 

Validation was applied during the evaluation phase. The model 

with the best overall performance was selected and deployed as a 

REST API using the Flask framework. This API was integrated 

into the ATPPM system to provide real-time root cause predictions 

for newly reported defects. The deployment design allows for 

future model updates without disrupting the existing system. 

2.5.6. API Integration 

The final model was integrated into the ATPPM system via an 

internal REST API. When a new defect is recorded in the system, 

the API suggests possible root causes and enables operators to 

validate and take action accordingly. 

3. Result 

The model evaluation phase was carried out using a combination of 

performance metrics, including Precision, Recall, and F1-Score, as well as 

K-Fold Cross Validation. Totally eleven machine learning models were 

tested during this phase to identify the most suitable model for deployment. 

 

3.1 Model Performance Comparison 

A total of 11 machine learning models were trained and evaluated using 

the preprocessed dataset. The initial evaluation was based on the 

performance on the test set, with results summarized in Figure 3. 

Evaluation that measured were Precision, Recall, and F1-score metrics. 

These metrics helped assess the ability of each model to detect defect 

patterns accurately. 

Figure 3: Performance comparison of 11 machine learning models. 

 

3.2 K-Fold Cross Validation 

To ensure the generalizability and robustness of each model, K-Fold 

Cross Validation was applied with k = 5. The result of accuracy across all 

folds for each algorithm is shown in Figure 4, providing a more reliable 

comparison of the models' consistency across subsets of data. 

Figure 4: Performance comparison of 11 machine learning models. 

 

3.3 Model Deployment 

Based on the evaluation results, the model with the most consistent and 

highest overall performance was selected for deployment. The selected 

model was integrated into a RESTful API and deployed to interface directly 

with the ATPPM system used on the production line. The architecture 

between API and ATPPM system / web app is explained in Figure 5, and 

the design of ATPPM system that already improved by AI is explained in 

Figure 6. 

Figure 5: Architecture of ATPPM System and AI API 
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Figure 6: Design and Screenshot of ATPPM system after AI integration 

 

3.4 Operational Impact 

The integration of the machine learning-based recommendation system 

into the ATPPM process has led to significant operational benefits. 

Previously, manual root cause analysis for a new defect case could take up 

to 230 minutes per case. With the assistance of AI-generated predictions or 

recommendations, the analysis time has been reduced to approximately 2 

minutes, resulting in a time savings of 228 minutes per case. 

Beyond time efficiency, the implementation has also delivered 

seamless integration into shop floor operations, where operators now have 

direct access to the system, as illustrated in Figure 7. This practical 

application demonstrates not only the conceptual effectiveness of the 

system but also its adaptability and usefulness in real-world production 

environments. 

Figure 6: Implementation of ATPPM System Integrated with AI 

 

This improvement has significantly enhanced operational efficiency by 

enabling much faster decision-making, allowing analysts to shift their focus 

from time-consuming, repetitive defect classification tasks to more 

strategic, preventive actions. Additionally, the use of AI-driven 

recommendations has introduced greater consistency and objectivity in 

defect classification, thereby minimizing the influence of human bias in the 

evaluation process. Furthermore, the integration of this system has 

strengthened traceability and digital documentation within the ATPPM 

environment, providing a more structured foundation to support ongoing 

quality improvements and data-driven decision-making initiatives. 

4. Conclusion 

In this study, we have demonstrated a practical application of machine 

learning in the automotive manufacturing domain to enhance root cause 

analysis for production defects. Historically, the identification of root 

causes has depended heavily on manual analysis by experienced personnel, 

which was time-consuming, subjective, and often delayed the 

implementation of effective countermeasures. By leveraging historical 

defect data embedded in the ATPPM system—containing thousands of 

records across time—we have built a data-driven solution capable of 

significantly improving both the speed and consistency of root cause 

evaluation. 

Through a structured development process involving data cleaning, 

model training, and integration via API, we successfully implemented a 

machine learning pipeline that classifies defect cases based on prior 

knowledge. From the evaluation of eleven models, Support Vector Machine 

(SVM) emerged as the most robust in cross-validation, achieving an 

average accuracy of 89.1%, while Logistic Regression offered the highest 

initial F1-score of 0.83. The chosen model was deployed using a Flask-

based REST API and embedded into the factory’s existing ATPPM 

infrastructure. 

The impact of this integration has been substantial. With the support of 

AI-based prediction, the root cause analysis process was reduced from an 

average of 230 minutes per case to just 2 minutes. This improvement not 

only enhances operational efficiency but also enables production analysts 

to act more quickly, shifting focus from repetitive classification tasks to 

preventive and value-adding activities. Furthermore, the system offers more 

consistent and objective analysis results, minimizes human bias, and 

improves traceability and documentation within the production quality 

system. 

This study confirms that integrating machine learning into defect 

analysis workflows can provide tangible benefits in a manufacturing 

environment. Looking forward, expanding the system to automatically 

retrain the model on a regular schedule, incorporating additional data 

sources such as real-time big data and quality management systems, and 

scaling the implementation to multiple production lines hold strong 

potential for wider organizational impact and long-term operational 

resilience. 
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