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ABSTRACT

In automotive manufacturing, repetitive defects often occur across different time periods, creating a valuable historical dataset containing defect names and their
corresponding root causes. Traditionally, identifying the root cause of a production defect relied heavily on human analysis, requiring significant time and on-site
inspection. This often led to delayed countermeasures, increased production downtime, and additional issues such as line stops. This study presents an Al-based
approach to assist root cause analysis using historical defect data, aiming to reduce the analysis time and improve feedback accuracy. The implementation focused
on enabling faster and more accurate identification of root causes by integrating a machine learning model into the factory’s defect recording system (ATPPM,
Analisa Tindakan Penanggulangan dan Pencegahan Masalah). The development process involved data preprocessing, model training, and API deployment. The
original dataset consisted of 3,128 records, which were cleaned and reduced to 1,449 labeled entries, each annotated with one of 161 unique root cause labels.
Eleven machine learning models were evaluated, including Logistic Regression, Random Forest, SVM, and RNN. Initial evaluation using F1-score, precision, and
recall showed Logistic Regression achieving the best F1-score of 0.83. Further validation using 5-Fold Cross Validation identified the Support Vector Machine
(SVM) as the best-performing model, with an average accuracy of 89.1%. This model was deployed via a Python Flask API and integrated into the existing ATPPM
system. The Al-powered system significantly accelerated the root cause analysis process, reducing the average analysis time by 228 minutes. Potential future
enhancements involve automating the model’s training process on a regular schedule (weekly or daily), integrating additional data sources including big data and

quality management systems, and scaling the current API implementation to multiple production lines for wider impact.
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1. Introduction

In the automotive manufacturing industry, maintaining high product
quality and operational efficiency is critical. Production defects, even minor
ones, can lead to significant consequences, including increased rework,
production line stops, and customer dissatisfaction. Root Cause Analysis
(RCA) is a key method used to identify the underlying causes of defects
and to implement effective corrective actions. However, traditional RCA
relies heavily on human expertise and manual investigation, which often
results in delayed responses, inconsistent results, and increased operational
costs [7]. In many manufacturing environments, particularly in developing
regions, operators face difficulty in determining the root causes of
production defects due to limited analytical tools and time constraints.
Although manufacturing systems often record defect histories, these
datasets are typically underutilized. In such cases, repetitive defects with
previously known solutions continue to consume resources and time during
reanalysis. This study addresses that gap by applying Artificial Intelligence
(A]) to leverage historical defect data and assist in predicting root causes
faster and more accurately.

The emergence of Al and Machine Learning (ML) techniques has
enabled predictive analytics to be applied effectively in various industries,
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including manufacturing [15]. Predictive models can process large volumes
of past data, extract meaningful patterns, and support real-time decision-
making, particularly in defect classification, anomaly detection, and
process optimization [18][20]. Prior works have shown that ML techniques
such as Support Vector Machines (SVM), Random Forest, and Neural
Networks are effective in defect detection and classification tasks [3][10].
However, limited research exists on using Al specifically for root cause
prediction in the automotive sector.

This research proposes the development and deployment of an Al-
based system to support root cause analysis in a car manufacturing plant in
Indonesia. By training machine learning models on historical data
consisting of defects and their confirmed root causes, the system aims to
assist production operators by providing automated predictions for new
defect entries. This Al assistance reduces analysis time significantly and
improves the consistency and accuracy of feedback given during problem-
solving processes.

The objectives of this study are twofold: (1) to reduce the time required
for analyzing and acting on production defects by using Al predictions, and
(2) to build a scalable Al architecture that can be integrated with existing
systems and potentially expanded across other production lines. This paper
also presents a comparison of multiple ML models, highlighting the most
effective one for root cause prediction, and discusses the practical
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implementation of the Al model within the factory’s production

environment.

2. Materials and Methods

2.1. Materials

The primary material used in this study is a dataset extracted from the
defect reporting system of a production line from automotive
manufacturing plant in Indonesia. The dataset contains historical records of
production defects, including the defect name, its corresponding area, and

the analyzed root cause. This dataset is described in Table 1.

Table 1. Dataset of defect and root cause historical record.

id file countermeasure [area defect [analyziz
L[INSTRUMENT PANEL UPPER LH CHIP PAINT pofigha/p>
2[INSTRUMENT PANEL UPPER LH CHIP PAINT preadsadsd</p
3[INSTRUMENT PANEL UPPER LH CHIP PAINT prasdsad-</p
+|TAILGATE RH () REAR FLOOR TOUCHING poasdasda/p>
5[ LIST WATER STRIP FRONT DOOR INNEF COME OFF potes cm=/p>
6| INSTRUMENT PANEL LOWER () CENTENOT FIX
7[APILLAR GARNISH RH NOT FIX
& [BRAKE TUBE FR FUEL TANK (X) CLAMHCOME OFF
9[GROMET COWL ENGINE WIRE HARNES{NOT FIX
10[INSTRUMENT PANEL RH UPPER (X) LANOT FIx
11[GLOVE BOX SCRATCH
12[FRONT DOOR OUTER PANEL RH OKASARE
13[QUARTER PANEL RH PAINT ADHESION
1| FENDER PANEL RH YELLOWING
15[B PILAR PANEL QUTER RH OKASARE
15[FRONT DOOR OUTER PANEL LH THIN PAINT
17[FRONT DOGR OUTER PANEL LH YARN SEED
13|FRONT DOOR OUTER PANEL LH POOR REPAIR
19[TAIL GATE RH (X) REAR FLOOR TOUCHING
20|FRONT DOOR OPENING STAIN YELLOW
ENGINE HOOD OUTER OKASARE
EAR DOOR PANEL OUTER RH OKASARE
YELLOWING
SEMPIT
BACK DOOR (X) ROOF PANEL TOUCHING
25BACK DOOR GPENING TRIM LH NOT FIX
27[BOLT FRONT BUMPER UNTIGHTENING
p>Suspect Problem </p>
p>1. There is 2 waste betwzen roller and panel step</p>
28|REAR DOOR OPENING RH SCRATCH
p>2. Installation of Rr Door area Lower is variation
because ligis not rigid</p>
29|REAR DOOR PANEL OUTER RH POOR REPAIR YELLOWIN <p>"The problem caused by tz=am member repair anly&nbap
30|FR DOOR (X) REAR DOOR RH J0GLE p>"Mathoda chack ahter repairnbsp; doss not maximalnb
31[HEAD LINING FRONT RH TEAR p>The problem caused by headlining touching with bady wi
32|FR CARPET FLOOR LH SURPLUS PART SCREW |<p>"Screw is not from assemblyt process,we already checka
33[OPENING TRIM REAR DOOR RH NOT FIX p>The problem caused by over flange body . 50 cpening tr
3+[CUSHION RUBBER BACK DOCR RH__|NOT FIX p>"The rib of cushion net install properly .all rib dont in to
35[OPENING TRIM FR DOOR INNERRH  [NOT FIX p>The problem caused by handling process when hand tou
35| CLIP COWL VENTILATOR LH NOT FIX p>Team member proses pasang Hip cowl ventilator tidak

Initially, 3,128 records were collected from the system’s database.
However, due to the presence of inconsistent, duplicated, or irrelevant
entries, a data cleaning process was conducted. This involved:

e Data Deduplication
e Manual Annotation and grouping similar defect/root cause terms
e Stopword Removal and Text Normalization

After cleaning, the resulting dataset consisted of 1,449 valid records,
annotated with 161 unique root cause labels, each label having at least 9
records. The final dataset is described in Table 2 that simplified to Text and
Label columns. Text column contains combination of Area and Defect
Name, and label contains the root cause category as manual annotation.
This final dataset was split into 70% for training and 30% for testing.
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Table 2. Final dataset of defect and root cause group (1 label).

-|label
Broken locking
Broken locking

text

COVER RELAY BOX CLOSE HARD
COVER RELAY BOX CLOSE NOT EASY
COVER RELAY BOX DIFFICULT CLOSE
COVER RELAY BOX NOT FIT

COVER RELAY CLOSE HARD

COVER RELAY CLOSE ISSUE

COVER RELAY CLOSE NOT EASY
COVER RELAY CLOSE PROBLEM
COVER RELAY DIFFICULT CLOSE

Broken locking
Broken locking
Broken locking
Broken locking
Broken locking
Broken locking
Broken locking

2.2. Machine Learning Models

In the implementation phase of this study, several established machine
learning models were selected to address the defect classification problem.
These models have been widely applied in related research domains. The
following section provides a concise overview of each model:

2.2.1. K-Nearest Neighbors (KNN)

A non-parametric, instance-based learning algorithm that
classifies a data point based on the majority class of its k-nearest
neighbors in the feature space [1].
XGBoost (Extreme Gradient Boosting)
A scalable, tree-based ensemble method that uses gradient
boosting techniques for classification and regression tasks,
known for its performance in structured data problems [5].
LightGBM (Light Gradient Boosting Machine)
A highly efficient gradient boosting framework that uses
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histogram-based algorithms, enabling faster training and lower
memory usage than XGBoost [12].

2.2.4. Decision Tree

A tree-structured model where each internal node represents a
feature condition and each leaf node represents a class label. It is
interpretable and simple to implement [16].

2.2.5. Random Forest

An ensemble of decision trees trained on different subsets of the
data. It improves accuracy and reduces overfitting by aggregating
predictions [4].

2.2.6. Naive Bayes

A probabilistic classifier based on Bayes’ theorem with the
assumption of feature independence. It performs well on high-
dimensional data [8].

2.2.7. Linear Discriminant Analysis (LDA)

A classification technique that models the difference between

classes using linear combinations of features, assuming Gaussian

distributions [9].

Support Vector Machine (SVM) Linear

A supervised learning algorithm that finds the optimal hyperplane
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to separate classes using a linear decision boundary [6].
Support Vector Machine (SVM) Non-Linear (RBF Kernel)
Uses the Radial Basis Function (RBF) kernel to map input data to
a higher-dimensional space for classification of non-linearly
separable data [6].
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2.2.10.Logistic Regression
A statistical model used for binary classification tasks that
estimates the probability of a class label using a logistic function
[11].

2.2.11.Recurrent Neural Network (RNN)
A type of neural network suitable for sequential data, capable of
retaining memory of previous inputs using hidden states [14].

2.3. Evaluation Metrics
As this study addresses a real-world quality control problem in a
manufacturing environment, it is essential to ensure that the machine
learning models not only achieve high overall accuracy, but also balance
precision and recall. For this reason, appropriate evaluation metrics are
applied as described below.
2.3.1. Precision
Precision is the ratio of correctly predicted positive observations
to the total predicted positives. It is a measure of the model’s
exactness, as formula mentioned in Equation 1 that TP stands for
True Positive, and FP stands for False Positive.

TP

Precision = TP+ FP

(O]

. Recall (Sensitivity)
Recall is a measure of the model’s completeness. It is the ratio of
correctly predicted positive observations to all actual positives, so
that it’s include FN (False Negative) in the formula that express
in Equation 2.

Recall = =2

TP+FN @

2.3.3. F1-Score

F1-Score is the harmonic mean of Precision and Recall. It
balances both metrics and is useful in imbalanced class scenarios.
The formula is described in Equation 3.

— Precision x Recall
F1=2x Precision+Recall (&)
2.3.4. K-Fold Cross Validation

A resampling technique used to evaluate models by dividing the
data into k equal-sized folds. Each fold is used once as the test
set, while the remaining k—/ folds are used for training. The final
performance is the average of the scores across all k iterations
[13].

2.4. System and Tools

The Al model was built using Python programming language,
leveraging the Flask framework to develop a lightweight REST API. The
API was deployed on a Windows Server environment to integrate directly
with the factory’s existing ATPPM (d4nalisa Tindakan Penanggulangan
dan Pencegahan Masalah) system, whose interface is shown in Figure 1.
The ATPPM system records analysis reports of production defects,
including the corrective and preventive actions taken. This system has been
in operation for the past 3 years on the production line that serves as the
object of this study.
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Figure 1: The Interface of ATPPM system to input Root Cause Analysis
of Defect.

The system’s Natural Language Processing (NLP) components were
developed using the NLTK library, focusing on basic preprocessing tasks
such as tokenization, stopword removal, and basic synonym handling to
handle variations in defect/root cause descriptions [2].

2.5. Methodology
The methodology for this research is explained in Figure 2, that
involved the following stages:

Retum ta previous steps to get better result - o
Figure 2: Methodology of AI Implementation Research for Root Cause

Analysis in Manufacturing Plant.

2.5.1. Data Collection & Annotation
Defect and root cause data were collected and manually annotated
into meaningful categories.

2.5.2. Data Preprocessing, Data Augmentation
Standard NLP preprocessing was applied, including cleaning,
tokenization, and manual correction for mislabeled or ambiguous
terms [19]. Data Augmentation is needed to address the issue of
data imbalance, data duplication was used for underrepresented
labels.

2.5.3. Data Separation for Training and Test
The targeted dataset was split into 70% for training and 30% for
testing.

2.5.4. Model Training & Evaluation (Model Insight)
Eleven popular classification models were selected for
benchmarking: K-Nearest Neighbors (KNN), XGBoost,

LightGBM, Decision Tree, Random Forest, Naive Bayes, Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM)
Linear, SVM Non-Linear (using RBF Kermel), Logistic
Regression, and Recurrent Neural Network (RNN). These models
were evaluated using Precision, Recall, and F1-score metrics [17].
Additionally, a K-Fold Cross Validation was performed to validate
model consistency and avoid overfitting.
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2.5.5. Model Selection & Deployment

2.5.6.

Multiple machine learning models were trained and evaluated
using consistent metrics such as precision, recall, and F1-score. To
ensure performance stability and avoid overfitting, 5-Fold Cross
Validation was applied during the evaluation phase. The model
with the best overall performance was selected and deployed as a
REST API using the Flask framework. This API was integrated
into the ATPPM system to provide real-time root cause predictions
for newly reported defects. The deployment design allows for
future model updates without disrupting the existing system.

API Integration

The final model was integrated into the ATPPM system via an
internal REST APL. When a new defect is recorded in the system,
the API suggests possible root causes and enables operators to
validate and take action accordingly.

3. Result

The model evaluation phase was carried out using a combination of

performance metrics, including Precision, Recall, and F1-Score, as well as

K-Fold Cross Validation. Totally eleven machine learning models were

tested during this phase to identify the most suitable model for deployment.

3.1 Model Performance Comparison

A total of 11 machine learning models were trained and evaluated using

the preprocessed dataset.

The initial evaluation was based on the

performance on the test set, with results summarized in Figure 3.

Evaluation that measured were Precision, Recall, and F1-score metrics.

These metrics helped assess the ability of each model to detect defect

patterns accurately.
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Figure 3: Performance comparison of 11 machine learning models.
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3.2

K-Fold Cross Validation
To ensure the generalizability and robustness of each model, K-Fold

Cross Validation was applied with k = 5. The result of accuracy across all

folds for each algorithm is shown in Figure 4, providing a more reliable

comparison of the models' consistency across subsets of data.

KNN i 1 XG Boost i
Accuracy for Fold 1: ©.7965517241379311  + | Accuracy for Fold 1: ©.7921034482758621
Accuracy for Fold 2: @.8103448275362060 | . Accuracy for Fold 2: 0.7620689655172413 |
Accuracy for Fold 3: 0.7448275862068966 | | Accuracy for Fold 3: @.7551724137931034 |
Accuracy for Fold 4: ©.7862668065517242 . - Accuracy for Fold 4: 8.7793103448275862
Accuracy for Fold 5: ©.8068965517241370 | | Accuracy for Fold 5: @.7724137031034483
Total Accuracy: 0.7889655172413794 .+ Total Accuracy: ©.7724137931034483

Light GBM i 1Decision Tree i

Fold 1: ©.7103448275862069
Fold 2: 0.6826551724137931 | Accuracy for
Fold 3: 0.7241370310344828 I Accuracy for
a
5

Accuracy for
Accuracy for
Accuracy for

Accuracy for Fold 1: ©.8413793183448276 ;

Fold 2: ©.7827586286896552

Fold 3: ©.7275862068965517 1

Fold 4: ©.7827586206896552

1d 5: ©.8137931034482758 |
7896551724137 .

Accuracy for Fold 4: ©.6724137931634483 - Accuracy for
Accuracy for Fold 5: ©.606551724137031 | | accuracy for F
Total Accuracy: @.69 6551723 M

Random Forest i 1 Naive Bayes i
Accuracy for Fold 1: ©.8931834482758621 ° * Accuracy for Fold 1: ©.8310344827586207 M
Accuracy for Fold 2: ©.8931634482758621 | | Accuracy for Fold 2: 8.7965517241379311 |
Accuracy for Fold 3: 0.8758620680655172 | | Accuracy for Fold 3: 0.7965517241379311 |
Accuracy for Fold 4: ©.8862068965517241 « Accuracy for Fold 4: ©.8241379310344827
Accuracy for Fold 5: I Accuracy for Fold 5: 8.8137031834482758 |

©.8827586206896552 |

Total Accuracy: 0.8862068965517242

Total Accuracy: ©.8124137931034483

SVM i
Accuracy & Fold 1: ©.8896551724137931
Accuracy for Fold 2: ©.8827586206806552
Accuracy for Fold 3: 9.983448275862069
Accuracy for Fold 4: ©.8896551724137931
Accuracy for Fold 5: 0.8896551724137931
Total Accuracy: ©.8910344827586206

LDA Linear Discriminant Analysis | 1
Fold 1: ©.8758620689655172 '
Fold 2: ©.8655172413793103 | |
Fold 3: ©.8620689655172413 + |

4

Accuracy for
Accuracy for
Accuracy for
Accuracy for
Accuracy for

Fold 4: ©.8806551724137931
Fold 5: 8.84482758562068966 1 |

Total Accuracy: ©.8675862068965516 . .

1SVM nonlinear RBF i i RNN i
1

Accuracy for Fold 1: 0.8827586286896552 .
Accuracy for Fold 2: 0.8793183448275862 | pecunsey for fold 1: .a7rRsI IS0 1
Accuracy for Fold 3: 0.8327585206896552 | 71 -] - 1s Gams/step
Accuracy for Fold 4: 0.896551724137931 | | accurac 3103448275862 !
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Figure 4: Performance comparison of 11 machine learning models.

3.3 Model Deployment

Based on the evaluation results, the model with the most consistent and

highest overall performance was selected for deployment. The selected
model was integrated into a RESTful API and deployed to interface directly
with the ATPPM system used on the production line. The architecture
between API and ATPPM system / web app is explained in Figure 5, and
the design of ATPPM system that already improved by Al is explained in
Figure 6.

Senver

Preprocessing

API:

Framework: Flask

Build in Python

NLTK library for English NLP
Runining in Windows Server

TRAINING

Qutput

input
" From Al

APL

I

Apocne
ATPPM App Web Server ATPPH web fpp

Figure 5: Architecture of ATPPM System and Al API
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Figure 6: Design and Screenshot of ATPPM system after Al integration

3.4 Operational Impact

The integration of the machine learning-based recommendation system
into the ATPPM process has led to significant operational benefits.
Previously, manual root cause analysis for a new defect case could take up
to 230 minutes per case. With the assistance of Al-generated predictions or
recommendations, the analysis time has been reduced to approximately 2
minutes, resulting in a time savings of 228 minutes per case.

Beyond time efficiency, the implementation has also delivered
seamless integration into shop floor operations, where operators now have
direct access to the system, as illustrated in Figure 7. This practical
application demonstrates not only the conceptual effectiveness of the
system but also its adaptability and usefulness in real-world production
environments.

3. e { k. P | i g
Figure 6: Implementation of ATPPM System Integrated with Al

This improvement has significantly enhanced operational efficiency by
enabling much faster decision-making, allowing analysts to shift their focus
from time-consuming, repetitive defect classification tasks to more
Additionally,
recommendations has introduced greater consistency and objectivity in

strategic, preventive actions. the use of Al-driven
defect classification, thereby minimizing the influence of human bias in the
evaluation process. Furthermore, the integration of this system has

strengthened traceability and digital documentation within the ATPPM
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environment, providing a more structured foundation to support ongoing
quality improvements and data-driven decision-making initiatives.

4. Conclusion

In this study, we have demonstrated a practical application of machine
learning in the automotive manufacturing domain to enhance root cause
analysis for production defects. Historically, the identification of root
causes has depended heavily on manual analysis by experienced personnel,
the
implementation of effective countermeasures. By leveraging historical

which was time-consuming, subjective, and often delayed
defect data embedded in the ATPPM system—containing thousands of
records across time—we have built a data-driven solution capable of
significantly improving both the speed and consistency of root cause
evaluation.

Through a structured development process involving data cleaning,
model training, and integration via API, we successfully implemented a
machine learning pipeline that classifies defect cases based on prior
knowledge. From the evaluation of eleven models, Support Vector Machine
(SVM) emerged as the most robust in cross-validation, achieving an
average accuracy of 89.1%, while Logistic Regression offered the highest
initial F1-score of 0.83. The chosen model was deployed using a Flask-
based REST API and embedded into the factory’s existing ATPPM
infrastructure.

The impact of this integration has been substantial. With the support of
Al-based prediction, the root cause analysis process was reduced from an
average of 230 minutes per case to just 2 minutes. This improvement not
only enhances operational efficiency but also enables production analysts
to act more quickly, shifting focus from repetitive classification tasks to
preventive and value-adding activities. Furthermore, the system offers more
consistent and objective analysis results, minimizes human bias, and
improves traceability and documentation within the production quality
system.

This study confirms that integrating machine learning into defect
analysis workflows can provide tangible benefits in a manufacturing
environment. Looking forward, expanding the system to automatically
retrain the model on a regular schedule, incorporating additional data
sources such as real-time big data and quality management systems, and
scaling the implementation to multiple production lines hold strong
potential for wider organizational impact and long-term operational
resilience.
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