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A B S T R A C T 

This research explores the application of computer vision using YOLOv5 Medium for automatic object detection in unmanned rail inspection 

systems. The proposed technique utilizes image processing to analysing pixel values and detect optical motion vehicles. This detection triggers control 

system responses, such as activating the inspection train's motor upon vehicle identification. The study demonstrates the effectiveness of YOLOv5 
Medium in achieving high accuracy rates. Evaluations at various distances yielded promising results: 97.98% at 3 meters, 100% at 5 meters, 99.49% at 

7 meters, and a perfect 100% at 9 meters. These findings suggest optimal system performance at a distance of 9 meters. Overall detection performance 

across all test distances remained consistently high, with sequential rates of 0.96, 0.97, 0.95, and 0.96. This research emphasizes the crucial role of several 
factors in maintaining system accuracy and performance. These include the efficacy of the colour segmentation algorithm, ambient lighting 

conditions, and camera resolution. Furthermore, the importance of extensive testing with a diverse dataset is highlighted to ensure the system's robustness 

and adaptability to various real-world scenarios. 
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1. Introduction 

Railway trains and tracks are complex assets that require constant 

inspection, management and maintenance. Computer vision can be used to 

control a braking system, detecting and monitoring various aspects of 

railway infrastructure, and it holds significant relevance for rail inspection 

technology. Computer vision can be used to detect obstacles on the railway 

tracks in real-time, allowing for faster and more precise braking compared 

to human reaction times.   

As we know, conventional object detection methods often struggle with 

specific scenarios, particularly dealing with humans. This conventional 

method, often involve handcrafted feature extraction, such Viola-Jones 

Detector, Histogram of Oriented Gradients (HOG) Detector, and 

Deformable Part-based Model (DPM) [1]. 

Viola-Jones Detector in Haar-like features, which are simple 

rectangular features capturing intensity differences, are manual defined. 

These features are selected based on their ability to differentiate between 

object and non-object regions [2]. 

On Histograms of oriented gradients are computed within local cells, 

capturing edge orientations in the image. These histograms are manually 

designed to capture the appearance of edges and contours in different 

orientations [3]. While DPM models consider hierarchical part-based 

structures, the appearance and geometric models for each part are manually 

defined. The model's ability to account for deformations and spatial 

relationships is also designed based on prior knowledge [4]. 

These traditional approaches have contributed significantly to the 

development of object detection methods, offering insights into handling 

different object characteristics and challenges. 

Deep learning-based approaches, on the other hand, have gained 

significant attention and success in recent years. Convolutional Neural 

Networks (CNNs) are a key technology in deep learning for object 

detection. They can learn to automatically extract relevant features from 

images and learn complex patterns that are representative of different object 

categories. There are two types of object detection architectures based on 

CNN, one-stage and two-stage detectors [5]. 

One-stage detectors are designed to directly predict bounding box 

coordinates and class probabilities for multiple objects in a single pass 

through the network. These detectors are known for their simplicity and 
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efficiency, as they eliminate the need for a separate proposal generation 

step. The key idea is to densely sample potential object locations and then 

predict the presence of an object and its associated bounding box in a single 

shot. Most relevance one-stage detectors is YOLOv5 [5]. 

One-stage detectors are known for their speed and real-time 

capabilities. They perform detection in a single pass, which makes them 

faster for real-time applications while they ended to have slightly lower 

accuracy compared to two-stage detectors. They may struggle with 

detecting small objects and handling object instances with significant size 

variations [5]. 

In this method, YOLOv5 Medium a fast and accurate object detection 

model, has potential applications in a railway inspection system that utilizes 

a control braking mechanism. Besides that, this approach can distinguish 

between actual obstacles and irrelevant objects, leading to fewer 

unnecessary braking events. By automating obstacle detection and braking 

response, YOLOv5 Medium can potentially improve overall efficiency and 

reduce operational costs. 

2. Methods 

2.1. Related Works 

A research by Deren Zhu [6] focuses on improving the You Only Look 

Once version 5 Small model (YOLOv5s) for the specific task of detecting 

small targets in Unmanned Aerial Vehicle (UAV) imagery. The researchers 

introduce a model called CCE-YOLOv5s. This is an improved version of 

YOLOv5s specifically designed for small target detection in UAV imagery. 

The main improvement involves adding a new layer to the YOLOv5s 

architecture. This layer, called the small target detection layer, utilizes a 

160x160 scale feature map. This allows the model to focus on smaller 

features in the image, enhancing its ability to detect small objects. This 

model is significantly better than the previous one. It achieves a mean 

Average Precision (mAP) of 80%. Additionally, it only takes 0.66 hours to 

train, which is 43% faster than the original model. In short, this improved 

model is both more accurate and faster to train, making it ideal for real-time 

application. 

Study by Sougatamoy Biswas [7] focuses on developing a system for 

recognizing gestures in real-time using an improved version of YOLOv5 

model. This study refers to a system that can identify hand gestures from a 

video stream or camera feed with minimal delay. This is crucial for 

applications where immediate response to gestures is needed. This model 

specifically for gesture recognition. These improvements might target 

accuracy, speed and robustness. In accuracy, enhance the model’s ability to 

correctly identify different gestures, especially subtle variations. In speed, 

further optimize the model for faster processing to maintain real-time 

performance. In robustness, improve the model’s ability to handle 

variations in lighting, background clutter, and hand position. Overall, their 

research demonstrates that the YOLOv5 model achieves mean Average 

Precision (mAP) of 96.8% indicating excellent real-time performance. 

Bowen Zheng [8] conducted a study that refers to identifying and 

locating objects that are in motion within an image or video sequence. This 

research, investigates how to leverage YOLOv5’s strengths for moving 

target detection while potentially addressing its limitations. Some areas of 

improvement might include accuracy, background handling, and real-time 

performance. Their research enhanced YOLOv5 model achieved a 

promising average detection accuracy of 82.3%. 

2.2. Research Methodology 

2.2.1 Design of Unmanned Rail Inspection 

Unmanned rail inspection allows automation of tasks related to 

monitoring of large infrastructure facilities. While unmanned rail 

inspection offers the benefit of automating tasks for monitoring large 

infrastructure facilities, the design and material selection for such systems 

are crucial for ensuring their durability and effectiveness in often harsh 

environments. Galvalum,  a steel sheet coated with a layer of zinc and 

aluminum, emerges as a compelling choice for several reasons.  

Galvalum offers superior corrosion resistance compared to regular 

steel. The zinc layer acts as a sacrificial anode, protecting the underlying 

steel from rust and degradation. This is particularly important for 

unmanned systems that may operate exposed to elements like rain, snow, or 

coastal environments.  

The aluminum layer in galvalum reflects heat, keeping the internal 

components of the inspection system cooler. This is essential for ensuring 

proper functioning of electronics and sensors, particularly in hot climates, 

and hot railway tracks. Incorporating galvalum into the design of unmanned 

rail inspection systems can contribute to their robustness, longevity,and 

overall effectiveness in monitoring critical infrastructure assets. 

 

  
Figure 1. Design of unmanned rail inspection. 

 

2.2.2 You Only Look Once version5 Medium (YOLOv5 Medium) 

The You Only Look Once v5 (YOLOv5) model belongs to a family of 

computer vision models known for their single-stage object detection 

capabilities. YOLOv5 offers a range of pre-trained variants, including small 

(s), medium (m), large (l), and extra-large (x) versions. These variants 

exhibit a progressive increase in accuracy but require correspondingly 

longer training times. YOLOv5 is designed by a use case of object 

detection, involves creating features from input image. The architecture of 

general YOLOv5 can be seen in Figure 2. 
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Figure 2. The architecture of YOLOv5. 

 

In Figure 2 can be seen that the architecture contains Backbone 

(CSPDarknet), Neck (Path Aggregation Network – PAnet), and Head 

(YOLOv5 layer). In Backbone (CSPDarknet), researcher breaking down 

into convolution, batch normalization, pointwise convolution (1 × 1 

convolution), and residual connections. In Neck (Path Aggregation 

Network – PANet), researcher break down into upsampling, convolution, 

and element-wise addition. In Head (YOLOv5 layer), researcher break 

down into prediction from feature maps, bounding box prediction, class 

probability prediction, and loss function . 

2.2.2.1 Backbone (CSP Darknet) 

• Convolution 

Convolution is the core operation for extracting features. The 

backbone uses multiple convolutional layers, each performing the 

element-wise multiplication and summation between the filter and 

the input data (previous layer’s output) [9]. 

             𝑂𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗] = ∑(𝐹𝑖𝑙𝑡𝑒𝑟[𝑚, 𝑛] × 𝐼𝑛𝑝𝑢𝑡[𝑖 + 𝑚, 𝑗 + 𝑛]                   (1) 

It explains that a filter (kernel) 𝐹𝑖𝑙𝑡𝑒𝑟[𝑚, 𝑛]  with learnable 

weights across the image and performing element-wise 

multiplication with the underlying image data. The sum (∑) of 

these products for each location in the filter becomes the 

corresponding value in the output 𝑂𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗] feature map. 

 

• Batch Normalization 

In Batch Normalization, researcher do normalization and scaling-

shifting (learned parameters). Those technique will normalize 

(𝑋ℎ𝑎𝑡) the activation (outputs) of convolutional layers across 

different mini-batches during training. It helps the network 

converge faster and improves stability. 

 

𝑋ℎ𝑎𝑡 =
𝑋 – 𝜇𝐵

𝜎𝐵
                        (2) 

 

𝑌 = 𝛾 × 𝑋ℎ𝑎𝑡 + 𝛽          (3) 

 

• Pointwise Convolution (1×1 convolution)  

This uses a 1×1 filter to perform a linear transformation on the 

channels of the feature map. It can be used for dimensionality 

reduction or introducing non-linearity. Similar to regular 

convolution, but the filter size is 1×1. So, the output at each 

position depends only on the weighted sum of the channels at 

that position in the input feature map. 

 

• Residual Connection 

The output (𝑦) of a residual block with a shortcut connection 

can be expressed as: 

 𝑦 = 𝐹(𝑥) + 𝑥 (4) 

Where (𝑥) represents the input to the residual block, and 𝐹(𝑥) 

represents the transformation learned by the stacked convolutional 

layers within the block. The input (𝑥) which is passed through a 

series of convolutional layers (𝐹(𝑥)) within the residual block. 

These layers perform feature extraction and potentially introduce 

non-linearity through activation functions. The output of these 

convolutional layers (𝐹(𝑥))  is then added element-wise to the 

original input (𝑥) . This effectively creates a path for the 

information to flow directly through the block without being 

altered by the complex transformations. This combination 

(𝐹(𝑥)  +  𝑥) becomes the final output (𝑦) of the residual block. 

 

2.2.2.2 Neck (Path Aggregation Network – PANet) 

• Upsampling (Bilinear Interpolation) 

This method considers the values of four neighboring pixels in the 

lower-resolution map and calculates a weighted average to create 

a new pixel value in the upsampled map. The weights are based 

on the distance of each neighboring pixel to the target location in 

the upsampled map [10]. It can be defined as: 

 𝑁𝑒𝑤𝑣𝑎𝑙𝑢𝑒(𝑖, 𝑗) = ∑(𝑊𝑒𝑖𝑔ℎ𝑡(𝑚, 𝑛) × 𝑂𝑙𝑑𝑣𝑎𝑙𝑢𝑒(𝑖 + 𝑚, 𝑗 + 𝑛)) (5) 

• Convolution 

After upsampling, PANet applies convolutions to the feature maps 

from different stages. These convolutions serve two purposes. 

First, to Reduce Channels. The number of channels in the feature 

maps might be high. Convolution with a 1 × 1 filter can be used 

to reduce the dimensionality and improve computational 

efficiency. Mathematically, this involves element-wise 

multiplication and summation with a learnable filter of size 1 × 1.  

The second one is Feature Refinement. Convolution can also be 

used to refine the features extracted at each stage. This might 

involve applying filters of larger sizes (e.g., 3 × 3) to extract 

additional information or introduce non-linearity with activation 

functions like LeakyReLU. 

 

• Element-wise Addition 

The core concept of PANet lies in combining information from 

various stages of the backbone. Once the upsampled and 

potentially refined feature maps are obtained, PANet performs 

element-wise addition.  This involves adding the corresponding 
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elements from each feature map at the same spatial location. 

Mathematically: 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑖,𝑗) = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝(𝑖, 𝑗) +  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝2 (𝑖, 𝑗) + ⋯ + 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝𝑁(𝑖, 𝑗) (6) 

 This element-wise addition allows PANet to create a richer 

feature representation that combines low-level details (from high-

resolution, shallow layers) with high-level semantic information 

(from low-resolution, deep layers) for improved object detection. 

 

2.2.2.3 Head (YOLOv5 Layer) 

• Anchor Boxes and Prior 

YOLOv5 predefines a set of anchor boxes with various sizes 

and aspect ratios at each location in the feature map from the neck. 

These act as initial predictions, and the model refines them to fit 

the actual objects. Mathematically, each anchor box can be 

represented as a tuple (𝑐𝑥, 𝑐𝑦, 𝑤, ℎ), where (𝑐𝑥, 𝑐𝑦) represent the 

center coordinates of the anchor box, and (𝑤, ℎ) represent the 

width and height of the anchor box. 

 

• Bounding Box Prediction with Offset 

The model predicts offsets for each anchor box to adjust its 

position and size to match the actual object. These offsets are 

relative to the predefined anchor box dimensions. Mathematically, 

the predicted bounding box coordinates (𝑡𝑥,  𝑡𝑦,  𝑡𝑤,  𝑡ℎ)  are 

calculated as: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑏𝑜𝑥 = (𝑐𝑥, 𝑐𝑦, 𝑤, ℎ) + (𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ)       (7) 

 

Where 𝑡𝑥,  𝑡𝑦 represent the offset adjustments to the anchor box 

center coordinates, and 𝑡𝑤,  𝑡ℎ represent the offset adjustments 

(ratios) to the anchor box width and height (taking the logarithm 

to ensure scale invariance). 

 

• Non-Max Suppression 

After the model predicts bounding boxes for each location, 

NMS is applied to remove redundant or overlapping boxes. NMS 

considers the confidence scores of each box and selects the one with 

the highest score. It then suppresses boxes with significant overlap 

with the selected box. The math behind NMS involves calculating 

the Intersection over Union (IoU) between bounding boxes and 

using thresholds to determine suppression. It's calculated as the area 

of intersection between the two boxes divided by the area of their 

union. Each bounding box can be represented by its minimum and 

maximum coordinates for both width and height: 

 
(𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥)               (8) 

 
Then calculate the overlapping width and height of the 

intersection region: 

 

𝑎𝑟𝑒𝑎(𝑏𝑜𝑥 1) = (𝑏𝑜𝑥 1𝑥𝑚𝑎𝑥
− 𝑏𝑜𝑥 1𝑥𝑚𝑖𝑛

) × (𝑏𝑜𝑥 1𝑦𝑚𝑎𝑥
−

𝑏𝑜𝑥 1𝑦𝑚𝑖𝑛
)                                                                                (9) 

 

𝑎𝑟𝑒𝑎(𝑏𝑜𝑥 2) = (𝑏𝑜𝑥 2𝑥𝑚𝑎𝑥
− 𝑏𝑜𝑥 2𝑥𝑚𝑖𝑛

) × 

 (𝑏𝑜𝑥 2𝑦𝑚𝑎𝑥
− 𝑏𝑜𝑥 2𝑦𝑚𝑖𝑛

)                       (10) 

 

So, the total union area considers both boxes and subtracts the 

overlapping area to avoid double counting: 

 
𝑈𝑛𝑖𝑜𝑛𝑎𝑟𝑒𝑎 = 𝑎𝑟𝑒𝑎(𝑏𝑜𝑥1) + 𝑎𝑟𝑒𝑎(𝑏𝑜𝑥2) − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑒𝑎   (11) 

 

Simply plug them into main equation that can be seen below: 

 

𝐼𝑜𝑈(𝑏𝑜𝑥 1, 𝑏𝑜𝑥 2) =
𝑎𝑟𝑒𝑎(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑏𝑜𝑥 1,𝑏𝑜𝑥 2))

𝑎𝑟𝑒𝑎(𝑢𝑛𝑖𝑜𝑛(𝑏𝑜𝑥 1,𝑏𝑜𝑥 2))
     (12) 

 

• Class Probability Prediction 

The model predicts the probability of each object belonging to 

a specific class within the predefined set of classes (e.g., person, 

car, truck). A convolutional layer with filters corresponding to 

each class is used. The output goes through a softmax function 

to convert it into a probability distribution. Mathematically, the 

softmax function takes a vector of logits (output from the 

convolutional layer) and transforms them into probabilities 

between 0 and 1, ensuring they sum to 1. The formula for 

softmax is: 

 

            (13) 

 

• Loss Function 

In this part, the loss function plays a crucial role in training the 

model to improve its object detection accuracy. It measures the 

difference between the model's predictions (bounding boxes and 

class probabilities) and the ground truth labels for each object in 

the training data. The YOLOv5 typically utilizes a combination of 

loss functions to address different aspects of the prediction, so 

researcher using combine losses between bounding box loss and 

classification loss. 

In bounding box loss focuses on penalizing errors in the 

predicted bounding boxes. A common choice is the Generalized 

Intersection over Union (GIOU) loss.  

 

𝐺𝐼𝑂𝑈 𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 +
(𝐷2−𝑑2)

𝑏2
             (14) 

 

As we can see in Equation 14, the GIOU loss incorporates not 

only the overlap (IoU) but also penalizes for excessive areas or 

poor overlap between the boxes (through the distance terms).  

In classification loss, measures the difference between the 

predicted class probabilities and the ground truth labels. A 

common choice is the cross-entropy loss: 

 

𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 =  −∑(𝑦𝑡𝑟𝑢𝑒 × log(𝑦𝑝𝑟𝑒𝑑))      (15) 
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The cross-entropy loss penalizes the model for incorrectly 

predicting class probabilities. YOLOv5 combines these loss 

functions with a predefined weighting factor (λ) to create the 

overall loss function: 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐿𝑜𝑠𝑠 = 𝜆 × 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥 𝐿𝑜𝑠𝑠 + 𝐶𝑙𝑎𝑠𝑠 𝐿𝑜𝑠𝑠   (16) 

 

The weighting factor controls the relative importance of each loss 

term during training. By minimizing the overall loss function 

through backpropagation during training, the model learns to 

adjust its predictions to better match the ground truth labels. This 

continuous optimization process refines the model's ability to 

accurately detect objects and their corresponding classes in 

unseen images. 

3. Result and Discussion 

From this research, the results of YOLOv5 Medium are obtained. However, 

the results of this research will be divided into two categories. The first 

category is the result of YOLOv5 Medium by validating the performance 

and distance in any projection value in rail inspection obtained. And the 

second, the scope of integration of the YOLOv5 Medium system for rail 

inspection. 

After the design system has been matched with the projection, the YOLOv5 

Medium is then integrated with the rail inspection system through the 

motor, which further regulates the range distance, so that the system will 

get information on the optimum joint distance. The system will manage the 

rail inspection in which direction to move through the vehicle object 

movement on the rail track. If a good result of the YOLOv5 Medium is 

detected, then the motor condition is on, and vice versa. 

In this research, researcher take samples in distance 3, 5, 7, and 9 meters 

for the accuracy and performance of YOLOv5 Medium in ideal condition. 

And the class in distance start at a distance of 1-15 meters. 

Table 1. Accuracy and performance in distance 3 meter. 

 Accuracy (%) Performance 

Distance 

System to 

Object in Any 

Projection 

1 90,90909 0,899326865 1,691546 

2 100 0,949890467 1,691546 

3 100 0,972448902 1,736701 

4 100 0,977042456 2,323711 

5 100 0,972686289 2,323711 

6 100 0,971956094 2,233402 

7 100 0,978331889 2,639794 

8 100 0,970708237 3,362268 

9 100 0,973965923 4,129897 

10 100 0,968603098 4,310515 

11 100 0,973835746 4,310515 

12 100 0,971922181 4,310515 

13 100 0,975894094 3,588041 

15 100 0,973803011 3,317113 

16 100 0,977188696 3,317113 

17 100 0,98070703 2,368866 

18 100 0,972864359 1,420619 

19 100 0,975279707 1,375464 

 

 

 
Figure 3. Vehicle detection in distance 3 meters. 

 

Table 3. Accuracy and performance in distance 5 meter. 

Frame Accuracy (%) Performance 

Distance 

System to 

Object in Any 

Projection 

1 84,84848 0,850559 6,29732 

2 84,84848 0,844887 6,29732 

3 96,9697 0,907605 6,161856 

4 100 0,930195 6,026392 

5 100 0,915528 6,026392 

6 96,9697 0,922423 6,161856 

7 100 0,93516 6,252165 

8 100 0,921102 6,026392 

9 100 0,91513 6,026392 

10 96,9697 0,906237 5,890928 

11 90,90909 0,906352 5,890928 

12 96,9697 0,909491 5,890928 

13 100 0,920081 5,936082 

15 100 0,92177 5,936082 

16 100 0,916532 6,116701 

17 100 0,924791 6,161856 

18 100 0,908984 6,116701 

19 96,9697 0,912072 6,116701 
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Figure 4. Vehicle detection in distance 5 meters. 

 

Table 4. Accuracy and performance in distance 7 meter. 

Frame Accuracy (%) Performance 

Distance 

System to 

Object in Any 

Projection 

1 84,84848 0,850559 6,29732 

2 84,84848 0,844887 6,29732 

3 96,9697 0,907605 6,161856 

4 100 0,930195 6,026392 

5 100 0,915528 6,026392 

6 96,9697 0,922423 6,161856 

7 100 0,93516 6,252165 

8 100 0,921102 6,026392 

9 100 0,91513 6,026392 

10 96,9697 0,906237 5,890928 

11 90,90909 0,906352 5,890928 

12 96,9697 0,909491 5,890928 

13 100 0,920081 5,936082 

15 100 0,92177 5,936082 

16 100 0,916532 6,116701 

17 100 0,924791 6,161856 

18 100 0,908984 6,116701 

19 96,9697 0,912072 6,116701 

 

 

 
Figure 5. Vehicle detection in distance 7 meters. 

 

Table 5. Accuracy and performance in distance 9 meter. 

Frame Accuracy (%) Performance 

Distance 

System to 

Object in Any 

Projection 

3 69,69697 0,713307 6,658557 

4 100 0,869228 10 

5 100 0,949387 9,445161 

6 100 0,9688 9,445161 

7 100 0,960908 9,445161 

8 100 0,957992 9,445161 

9 100 0,96142 9,445161 

10 100 0,961074 9,630323 

11 100 0,963739 9,445161 

12 100 0,96218 9,630323 

13 100 0,966155 9,630323 

14 100 0,958816 10,00065 

15 100 0,96469 9,815484 

16 100 0,974385 9,630323 

17 100 0,965898 9,815484 

18 100 0,95539 10,18581 

19 100 0,960274 10,00065 

 

 

 
Figure 6. Vehicle detection in distance 9 meters. 

 

 

After obtaining ideal conditions for object detection using YOLOv5 

Medium, the next stage is to set the detection distance to the automatic 

braking system via computer vision. So, for the braking process the results 
obtained can be seen in Table 6 below. 

Table 6. Optimal distance of motor status activation condition. 

Distance (m) Accuracy (%) Performance Motor Status 

3 97.98 0.96 ON 

5 100 0.97 ON 

7 99.49 0.95 ON 

9 100 0.96 ON 
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In Table 6, it can be seen and analyzed that the ideal distance for the system 

to detect and state the motor ON is at a distance of 3, 5, 7, and 9 metres. It 

indicates that the graph with the fourth cluster of distances condition shows 
a good initialization between frame count and accuracy compared to the 

other distances. However, in the initialization condition or at a distance of 

1 meter and 2 meters the motor status is OFF. It happens that the detection 
of human pose estimation is too close to the distance of the camera, and the 

range of the camera still cannot see the position of the rail. 

 

 

 
Figure 7. Total accuracy per frame and performance per frame in 

distance 3 meters. 

 

 

 
Figure 8. Total accuracy per frame and performance per frame in 

distance 5 meters. 

 

 

 
Figure 9. Total accuracy per frame and performance per frame in 

distance 7 meters. 

 

 

 
Figure 10. Total accuracy per frame and performance per frame in 

distance 9 meters. 

 

4. Conclusion 

The technique of using computer vision as an automatic control system of 

unmanned rail inspection is able to generate numerical values of the pixel 

values of the object detection, the accuracy level, and also the performance. 

The use of YOLOv5 Medium is used to be able to detect optical motion 

vehicle so that decisions can be obtained when vehicles are crossing which 

will be recognized through validation of the detector values obtained which 

will then be integrated with the control system of the inspection train is 

identified as crossing then the system will turn on the motor so that the 

motor is ON, and vice versa. The accuracy rate 97.98% in distance 3 meters, 

100 meters in 5 meters, 99.49% in distance 7 meters, and 100% in distance 

9 meters. This indicates that at a distance of 9 meters, the system will work 

ideally. From all the test carried out so that the results obtained the total 

detection performance rate sequentially 0.96, 0.97, 0.95, and 0.96.The 

system's accuracy and performance hinge on several factors, the colour 

segmentation algorithm's effectiveness, ambient lighting conditions, and 

camera resolution. Additionally, extensive testing with a diverse set of 

samples is crucial to ensure the system's robustness across various 

scenarios. 
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